5.8.3 Выпуклые функции и точки перегиба

Определение. Определенная на интервале $I$ функция $f$ называется выпуклой (выпуклой вниз) на $I$, если для любых $x^\prime, x^{\prime\prime} \in I $ и любого числа $\lambda (0 < \lambda < 1)$ выполняется неравенство
$$f (\lambda x^\prime + (1− \lambda )x^{\prime\prime}) \leqslant \lambda f (x^\prime ) + (1− \lambda )f (x^{\prime\prime}).$$

С геометрической точки зрения смысл выпуклости состоит в том, что все точки дуги графика функции $y = f(x)$ расположены не выше хорды, соединяющей концы этой дуги. Действительно, отрезок, соединяющий точки $(x^\prime , f (x^\prime ))$ и $(x^{\prime\prime} , f (x^{\prime\prime})),$ имеет вид
$$l(x) = f (x^\prime) + \frac{f (x^{\prime\prime})− f (x^\prime )}{x^{\prime\prime}− x^\prime}(x− x^\prime ).$$
При $0 <  \lambda < 1$ точка $x = \lambda x^\prime + (1− \lambda)x^{\prime\prime}$ принадлежит интервалу с концами $x^\prime$ и $x^{\prime\prime}.$ При этом неравенство, определяющее понятие выпуклости, принимает такой вид: $f(x) \leqslant l(x).$
Обозначим $x = \lambda x^\prime + (1 − \lambda)x^{\prime\prime}.$ Тогда $  \lambda = \frac{x^{\prime\prime}−x}{x^{\prime\prime}− x^\prime }, 1− \lambda = \frac{x−x^\prime }{x^{\prime\prime}−x^\prime}.$ Поэтому определение выпуклости можно переписать в таком виде: функция $f$ называется выпуклой на интервале $I$, если для любых точек $x^\prime , x^{\prime\prime} \in I,$ таких, что $x^\prime < x^{\prime\prime}, $ и для любого $x \in [x^\prime , x^{\prime\prime}] $справедливо неравенство
$$f(x) \leqslant f (x^\prime ) \frac{x^{\prime\prime}− x}{x^{\prime\prime}− x^\prime}+ f (x^{\prime\prime}) \frac{x− x^\prime}{x^{\prime\prime}− x^\prime}.$$
Если в определении выпуклости нестрогое неравенство заменить строгим, то получим определение строгой выпуклости вниз. С геометрической точки зрения строгая выпуклость означает, что, кроме выпуклости, график функции не содержит линейных отрезков.

Пример 1. Функция $f(x) = x,$ очевидно, выпукла вниз на всей числовой прямой.

Пример 2. Пусть $f(x) = x^2.$ Выберем произвольные $x^\prime < x^{\prime\prime}.$ Тогда для $0 < \lambda < 1$ имеем
$$(\lambda x^\prime + (1− \lambda) x^{\prime\prime} )^2 = \lambda^2 {x^\prime}^2 + 2 \lambda (1− \lambda )x^\prime x^{\prime\prime} + (1− \lambda)^2 {x^{\prime\prime}}^2 =$$
$$= \lambda {x^\prime}^2 +(1− \lambda){x^{\prime\prime}}^2 + {x^\prime}^2 ( \lambda^2− \lambda) +{x^{\prime\prime}}^2 [(1− \lambda)^2− (1− \lambda)] +2 \lambda (1− \lambda) x^\prime x^{\prime\prime} =$$

$$= \lambda {x^\prime}^2 + (1- \lambda ){x^{\prime\prime}}^2- [ \lambda (1- \lambda ) {x^{\prime}}^2 + \lambda (1- \lambda ) {x^{\prime\prime}}^2- 2 \lambda (1- \lambda ) x^\prime x^{\prime\prime} ] =$$

$$= \lambda {x^\prime}^2 + (1- \lambda ) {x^{\prime\prime}}^2- \lambda ( 1- \lambda ) ( x^\prime- x^{\prime\prime} )^2 < \lambda {x^\prime}^2 + (1- \lambda) {x^{\prime\prime}}^2$$

Это означает, что функция $f(x) = x^2$ строго выпукла вниз на $(− \infty, + \infty).$

Определение. Заданная на интервале $I$ функция $f$ называется вогнутой (выпуклой вверх) на этом интервале, если для любых $x^\prime, x^{\prime\prime} \in I$ и для любого $ \lambda (0 < \lambda < 1) $ справедливо неравенство

$$f( \lambda x^\prime + (1 — \lambda) x^{\prime\prime}) \geqslant \lambda f(x^\prime) + (1 — \lambda) f(x^{\prime\prime}).$$

Ясно, что если $f$ выпукла вниз, то функция − $f$ выпукла вверх. Поэтому достаточно изучить свойства лишь выпуклых вниз (т. е. выпуклых) функций.

Теорема 1. Пусть функция $f$ выпукла на интервале $I.$ Тогда $f$ непрерывна на $I$ и в каждой точке имеет конечные левую и правую производные.

Зафиксируем точку $x_0 \in I.$ Из существования конечных односторонних производных $ f’_{-} (x_0) $ и $ f’_{+} (x_0)$ следует непрерывность $f$ в точке $x_0.$
Докажем, что существует $ f’_{+} (x_0).$ Пусть $0 < h_1 < h_2$ таковы, что $x_0 + h_2 \in I.$ Тогда, в силу выпуклости $f,$
$$ f (x_0 + h_1 ) \leqslant f (x_0) \frac{h_2- h_1}{h_2} + f (x_0 + h_2 ) \frac{h_1}{h_2},$$
откуда
$$ \frac{f (x_0 +h_1)- f (x_0)}{h_1} \leqslant \frac{f(x_0 + h_2)- f (x_0)}{h_2}$$ Это неравенство означает, что функция  $ \varphi(h) = \frac{f (x_0 + h)- f (x_0)}{h} $ убывает при убывании $h$ к нулю справа. Покажем, что $\varphi$ ограничена снизу. Пусть $ \delta > 0$  такое, что $x_0- \delta \in I.$ Тогда, в силу выпуклости $f,$ для любого $h > 0$ $$ f (x_0) \leqslant f ( x_0- \delta ) \frac{h}{h + \delta } + f (x_0 + h) \frac{\delta }{ h + \delta },$$ откуда
$$ \frac{f (x_0)- f (x_0- \delta)}{ \delta } \leqslant \frac{f (x_0 + h)- f (x_0)}{h} = \varphi (h),$$ т. е. для любого $h > 0$ справедливо неравенство $$ \varphi (h) \geqslant \frac{f (x_0)- f (x_0- \delta)}{ \delta }, $$ т. е. $\varphi (h)$ ограничена снизу.
Итак, функция $\varphi (h)$ при убывающем $h,$ стремящемся к нулю справа, убывает и ограничена снизу. Следовательно, существует $$ f’_{+} (x_0) = \lim_{h \to 0+} \frac{f (x_0 + h )- f (x_0)}{h} = \lim_{h \to 0+}{ \varphi (h) }.$$
Аналогично можно показать, что существует $f’_{-} (x_0).$

Замечание. Из выпуклости функции не следует ее дифференцируемость. Например, функция $f(x) = |x|$ выпукла, но не дифференцируема в нуле. Теорема 1 утверждает, что у выпуклой функции существуют лишь односторонние производные. Анализируя доказательство теоремы 1, легко установить, что для выпуклой вниз функции $f$ в каждой точке $x_0$ справедливо неравенство $f’_{+} (x_0) \geqslant f’_{-} (x_0).$ Можно доказать, что выпуклая функция дифференцируема всюду, за исключением, быть может, не более чем счетного множества точек.

Теорема 2. Пусть функция $f$ выпукла вниз на интервале $(a, b),$ где $−\infty < a < b < +\infty.$ Тогда $f$ ограничена снизу.

Предположим противное. Тогда найдется последовательность точек $x_n \in (a, b),$ таких, что $f (x_n) <−n.$ Так как $ \{x_n\}$ ограниченная последовательность, то можем выделить сходящуюся подпоследовательность $\{x_{n_k}\}.$ Пусть $x_0 = \lim_{k \to \infty}  x_{n_k}.$ Точка $x_0 \in [a, b]$ (она не обязана принадлежать $(a, b)$). Тогда либо слева от $x_0,$ либо справа от $x_0$ найдется бесконечно много элементов нашей подпоследовательности $\{x_{n_k}\},$ из которой можно выделить монотонную подпоследовательность. Обозначим ее через $\{y_k\}_{k \geqslant 0}.$ Рассмотрим случай, когда $\{y_k\}$ возрастает. Пусть $f (y_k) = −m_k \to −\infty$ при $k \to \infty.$ Обозначим $z_0 = \frac{1}{2} (y_0 + x_0) \in (a, b).$ Тогда, начиная с некоторого номера $N,$ будем иметь $z_0 \in [y_0, y_n]$ при $n \geqslant N.$
В силу выпуклости $f,$ для $n \geqslant N$ получаем $$f(z_0) \leqslant f (y_0) \frac{y_n- z_0}{y_n- y_0} + f (y_n) \frac{z_0- y_0}{y_n- y_0}.$$ Поскольку правая часть этого неравенства стремится к  $−\infty$ при $n \to \infty,$ то получаем противоречие с тем, что значение $f (z_0)$ конечно.

Замечание. Выпуклая вниз на ограниченном интервале функция не обязана быть ограниченной сверху. Например, функция $f(x) = \frac{1}{x}$ выпукла вниз на $(0, 1)$ и неограничена сверху на этом интервале.
Также выпуклая вниз на неограниченном интервале функция не обязана быть ограниченной снизу. Например, функция $f(x) = \ln \frac{1}{x}$ выпукла вниз на $(0, +\infty)$ и неограничена снизу.

Теорема 3 (критерий выпуклости дифференцируемой функции). Пусть функция $f$ дифференцируема на интервале $I.$ Для того чтобы $f$ была выпуклой вниз на $I,$ необходимо и достаточно, чтобы ее производная $f’$ была возрастающей на $I.$

Необходимость. Пусть $x_1 < x < x_2 .$ Тогда, как было показано при доказательстве теоремы 1, выпуклость функции $f$ равносильна такому неравенству: $$ \frac{f(x)- f(x_1)}{x — x_1} \leqslant \frac{f(x_2)- f(x)}{x_2 -x} \quad \quad (5.5)$$Устремляя $ x \to x_1 + 0,$получаем$$ f’ (x_1) = f’_{+} (x_1) = \lim_{x \to x_1 + 0} \frac{f(x)- f(x_1)}{x- x_1} \leqslant \frac{f(x_2) — f(x_1)}{x_2- x_1}.$$ С другой стороны, если устремим $x \to x_2 − 0,$ то получим $$ f’ (x_2) = f’_{-} (x_2) = \lim_{x \to x_2- 0} \frac{f (x_2)- f (x)}{x_2- x} \geqslant \frac{f (x_2) — f (x_1)}{x_2 — x_1}.$$ Из двух последних неравенств следует, что $$ f’ (x_1) \leqslant f’ (x_2).$$

Достаточность.  Пусть $x_1 < x < x_2.$ Так как выпуклость $f$ равносильна (5.5), то достаточно показать, что справедливо неравенство (5.5).
По теореме Лагранжа,$$ \frac{f (x)- f (x_1)}{x- x_1} = f'(\xi_1), \frac{f (x_2) — f (x)}{x_2- x} = f'(\xi_2), $$
где $x1 < \xi_1 < x < \xi_2 < x_2,$ т. е. $\xi_1 < \xi_2.$ Отсюда следует (5.5).$\quad \square $

Замечание. При доказательстве достаточности мы получили, что $\xi_1 < \xi_2.$ Если производная $f’$ строго возрастает на $I,$ то $f’ (\xi_1) < f’ (\xi_2),$ откуда следует

$$ \frac{f (x)- f (x_1)}{x- x_1} < \frac{f (x_2) — f (x)}{x_2- x}.$$Это означает, что функция $f$ выпукла строго. Справедливо также и обратное, т. е. из строгой выпуклости дифференцируемой функции следует, что ее производная $f’$ строго возрастает. Действительно, в силу доказанной теоремы 3, из строгой выпуклости $f,$ в силу теоремы Лагранжа, следует неравенство$$ f’ (x_1) \leqslant f’ (\xi_1) = \frac{f (x)- f (x_1)}{x- x_1} < \frac{f (x_2) — f (x)}{x_2- x} = f’ (\xi_2) \leqslant f'(x_2), $$где $x_1 < x < x_2$ – произвольные точки из $I,$ а точки $\xi_1 \in (x_1, x), \xi_2 \in (x, x_2).$ Отсюда следует, что $f’ (x_1) < f’ (x_2).$

Теорема 4 (критерий выпуклости дважды дифференцируемой функции). Пусть функция $f$ дважды дифференцируема на интервале $I.$ Для того чтобы $f$ была выпуклой вниз на $I,$ необходимо и достаточно, чтобы было выполнено неравенство $f^{\prime\prime} (x) \geqslant 0 (x \in I).$
Эта теорема мгновенно вытекает из теоремы 3 и критерия монотонности дифференцируемой функции, примененного к $f’$ .

Замечание. Если в условии теоремы 4 производная $f^{\prime\prime} > 0,$ то $f’$ строго возрастает, и поэтому, в силу замечания к теореме 3, функция $f$ строго выпукла на $I.$ Обратное, однако, неверно. Из строгой выпуклости $f$ не следует, что $f^{\prime\prime} > 0.$ Например, функция $f(x) = x^4$ строго выпукла на $(− \infty, + \infty),$ однако $f’ (x) = 4x^3 , f^{\prime\prime}(x) = 12x^2$ и $f^{\prime\prime}(0) = 0.$

Пример 1. Пусть $f(x) = x^\alpha (0 < x < +\infty).$ Тогда $ f’ (x) =  \alpha x ^{ \alpha−1} , f^{\prime\prime}(x) = \alpha (\alpha − 1) x^{\alpha −2}.$ Если $ \alpha \in (0, 1), $ то $ f^{\prime\prime}(x) < 0$ и $f$ вогнута (выпукла вверх). Если $ \alpha \in (− \infty, 0) \cup (1, + \infty),$ то $ f^{\prime\prime}(x) > 0 $ и $f$ выпукла вниз.

Пример 2. Для функции $f(x) = \sin x$ имеем $f’ (x) = \cos x, f^{\prime\prime}(x) =− \sin x.$ При $x \in (2k\pi,(2k + 1)\pi)$ имеем $f^{\prime\prime}(x) < 0,$ т. е. $f$ выпукла вверх, а при $x \in ((2k− 1)\pi, 2k\pi)$ имеем $f^{\prime\prime}(x) > 0,$ т. е. $f$ выпукла вниз.

Точки перегиба. Точкой перегиба называется такая точка графика функции $y = f(x),$ которая разделяет его выпуклую и вогнутую части.

Определение. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 \in (a, b).$ Если на $(a, x_0)$ функция $f$ выпукла, а на $(x_0, b)$ – вогнута, или на $(a, x_0) f$ вогнута, а на $(x_0, b)$ – выпукла, то точка $(x_0, f (x_0))$ называется точкой перегиба функции $f.$

Если существует $f^{\prime\prime} (x_0)$ и $(x_0, f (x_0))$ – точка перегиба, то $f^{\prime\prime} (x_0) = 0.$ Действительно, существование $f^{\prime\prime} (x_0)$ предполагает существование $f’ (x)$ в некоторой окрестности точки $x_0.$ Если при переходе через точку $x_0$ функция $f$ меняет характер выпуклости, то, согласно теореме 3, при переходе через точку $x_0$ производная $f’ (x)$ меняет характер монотонности. Значит, в точке $x_0$ производная $f’ (x)$ имеет экстремум, откуда, в силу теоремы Ферма, $f^{\prime\prime} (x_0) = 0.$

Однако условие $f^{\prime\prime} (x_0) = 0$ не означает, что $(x_0, f (x_0))$ – точка перегиба функции $f.$ Например, для функции $f(x) = x^4$ имеем $f^{\prime\prime}(0) = 0,$ но в точке $(0, 0)$ перегиба нет.

Достаточным условием перегиба для дважды дифференцируемой функции является условие сохранения знака второй производной $f^{\prime\prime}$ слева от $x_0,$ справа от $x_0$ и его изменения при переходе через точку $x_0.$

Теорема 5. Пусть функция $f$ определена на интервале $I$ и точка $x_0 \in I.$ Пусть, далее, существует $f^{\prime\prime}(x) (x \in I), f^{\prime\prime} (x_0) = 0$ и $f^{\prime\prime}(x) \leqslant 0$ при $x < x_0$ и $f^{\prime\prime}(x) \geqslant 0$ при $x > x_0.$ Тогда $(x_0, f (x_0))$ – точка перегиба, и при переходе через точку $x_0$ функция меняет характер выпуклости с выпуклости вверх на выпуклость вниз.

Эта теорема является следствием теоремы 3.

Примеры решения задач

Пример 1.
Найти интервалы, при которых кубическая функция $y = x^3$ выпукла вниз и выпукла вверх.

Решение

Построим график функции $y = x^3$ .

Найдем первую и вторые производные. $$f'(x) = ( x^3)’= 3x^2;$$ $$f^{\prime \prime}(x) = (3x^2)’ = 6x.$$ Очевидно, что в этом случае $f^{\prime \prime} < 0$ для $x<0$ и $f^{\prime \prime} > 0$ для $x>0.$ Поэтому на бесконечном интервале $( \infty; 0)$ функция строго выпукла вверх, на интервале $(0; + \infty)$ строго выпукла вниз.

[свернуть]

Пример 2.
Найти точки перегиба функции $f(x) = {e^{-x}}^2.$

Решение

Найдем первую производную. $$ f'(x) = -2x {e^{-x}}^2;$$Найдем вторую производную функции: $$f^{ \prime \prime} = -2{e^{-x}}^2 + 4x^4{e^{-x}}^2 = 4(x+ \frac{1}{\sqrt{2}})(x- \frac{1}{\sqrt{2}}){e^{-x}}^2.$$

Производная функции обращается в нуль в точках $x=- \frac{1}{\sqrt{2}}$ и $x=\frac{1}{\sqrt{2}}$ и при переходе через них меняется знак, значит эти точки являются точками перегиба.

[свернуть]

Пример 3. Найти точки перегиба функции $ f(x) = x^3- 3x^2+ x.$

Решение

Найдем первую производную функции: $$ f'(x) = (x^3- 3x^2+x)’ = 3x^2- 6x +1; $$ Найдем вторую производную функции: $$ f^{\prime\prime}(x) = (3x^2- 6x + 1)’ = 6x- 6; $$ Найдем нули второй производной: $$6x- 6 = 0  \Rightarrow 6x = 6 \Rightarrow x = 1$$ $x = 1$ — точка перегиба.

[свернуть]

Пример 4. Найти точки перегиба функции $f(x) = \arccos(x + 2).$

Решение

Найдем первую производную: $$ f'(x) = ( \arccos(x+2))’ =- \frac{1}{ \sqrt{1 — (x + 2)^2}};$$

Найдем вторую производную:

$$ f^{\prime\prime} (x) = \left(- \frac{1}{ \sqrt{1- (x + 2)^2)}}\right)’=$$
$$ = \frac{1}{2 \sqrt{(1 — ( x + 2)^2)^3}} (0- 2(x +2)(x + 2))’=$$

$$=-\frac{x+2}{\sqrt{(1-(x+2)^2)^3}} = 0. $$

Найдем значение второй производной в точке $x=0:$

$x =- 2$ — точка перегиба.

[свернуть]

Пример 5. Найти точки перегиба функции $ y = \frac{\ln(x)}{x}$.

Решение

Найдем первую производную:$$ y =\left( \frac{1}{x} \ln(x) \right)’ = \frac{(\ln(x))’x- \ln(x)(x)’}{x^2}=\frac{\frac{1}{x}x- \ln(x)1}{x^2}=$$

$$=\frac{\frac{1}{x}x \ln(x)}{x^2} =\frac{ \ln{x}- 1}{ \ln^2(x)}.$$

Найдем вторую производную:

$$f^(\prime\prime)(x)== \frac{ \frac{1}{x} \ln^2(x)-(\ln(x- 1)) \frac{2 \ln(x)}{x} }{ln^4(x)}=$$ $$= \frac{\ln(x)- 2 \ln(x)+2}{x ln^3{x}}=\frac{2 — \ln(x)}{x \ln^3(x)}=0.$$

$ x = e^2 \approx 7,4$ — точка перегиба.

[свернуть]

Литература

  1. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. стр.149-154;
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. стр. 365-378
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, стр. 294-303.
  4. З. М. Лысенко. Лекции по математическому анализу.

Выпуклые функции и точки перегиба

Этот тест проверит ваши знания касательно темы «Выпуклые функции и точки перегиба»

М1396. Выполняется ли неравенство?

Задача из журнала «Квант» (1993, №5, M1396)

Условие

Докажите, что для любых положительных чисел $a_{k},b_{k} (k=1,2,…,n)$ выполнено неравенство $$\sum\limits_{k=1}^{n}{\frac{a_{k}b_{k}}{a_{k}+b_{k}}}\leq \frac{AB}{A+B}$$где $A=a_{1}+…a_{n}, B=b_{1}+…+b_{n}$.

Первое решение

Доказательство проведем по индукции. Докажем неравенство для $n=2$. Положим $v=a_{1}+b_{1},u=a_{2}+b_{2}$: $$a_{1}b_{1}u^2+(a_{1}b_{1}+a_{2}b_{2})uv+a_{2}b_{2}v^2\leq uv(a_{1}+a_{2})(b_{1}+b_{2})$$ или $$a_{1}b_{1}u^2-(a_{2}b_{1}+a_{1}b_{2})uv+a_{2}b_{2}v^2\leq 0$$Обозначим $t=u/v$. Перепишем неравенство: $$v^2a_{1}b_{1}(t-\frac{b_{2}}{b_{1}})(t-\frac{a_{2}}{a_{1}})\leq 0$$Подставляя $t=(a_{2}+b_{2})/(a_{1}+b_{1})$, приходим к эквивалентному неравенству: $$(b_{2}a_{1}-b_{1}a_{2})(a_{2}b_{1}-a_{1}b_{2})\leq 0$$ или $$-(b_{2}a_{1}-b_{1}a_{2})^2\leq 0$$Неравенство доказано.

Еще одно, геометрическое, доказательство неравенства основано на том, что биссектриса прямого угла треугольника с катетами $a$ и $b$ равна $\sqrt{2}ab/(a+b)$.

Picture one

Пусть, для определенности $b_{2}/a_{2}\geq  b_{1}/a_{1}$. Рассмотрим конфигурацию рисунка 1. Точка пересечения биссектрисы с отрезком $AB$ лежит дальше от вершины угла $O$, чем точка $L$ $(PK/KQ=BP/QA=b_{1}/a_{1})\leq PL/LQ=b_{2}/a_{2})$.

Дадим еще одно доказательство этого неравенства, основанное на исследовании функции $$f(x)=\frac{(x+a_{2})(b_{1}+b_{2})}{x+a_{2}+b_{1}+b_{2}}-\frac{xb_{1}}{x+b_{1}}$$ где $x\geq 0$. Нетрудно проверить, что $$f(0)=\frac{a_{2}(b_{1}+b_{2})}{a_{2}+b_{1}+b_{2}}>\frac{a_{2}b_{2}}{a_{2}+b_{2}}$$ функция $f(x)$ имеет единственный минимум при $x=a_{2}b_{1}/b_{2}$, равный $a_{2}b_{2}/(a_{2}+b_{2});$ $f(x)\rightarrow b_{2}$ при $x\rightarrow +\infty$ (рис. 2). Отсюда легко вывести, что $f(x)\geq a_{2}b_{2}/(a_{2}+b_{2})$ при всех $x\geq 0$. Далее, $$\sum\limits_{k=1}^{n+1}{\frac{a_{k}b_{k}}{a_{k}+b_{k}}}\leq \frac{A’B’}{A’+B’}+\frac{a_{n+1}b_{n+1}}{a_{n+1}+b_{n+1}}\leq \frac{AB}{A+B}$$ где $$A’=\sum\limits_{k=1}^{n}{a_{k}}, B’=\sum\limits_{k=1}^{n}{b_{k}}$$ Неравенство задачи доказано. Мы видели, что для $n=2$ неравенство переходит в равенство лишь при $x/b_{1}=a_{2}/b_{2}$, т.е. в случае коллинеарности векторов $(a_{1},b_{1})$ и $(a_{2},b_{2})$. Попробуем дать задаче дальнейшую векторную интерпретацию.

Второе решение

Будем рассматривать числовые функции $f(\bar{x})$, где $\bar{x}=(x,y)$ — вектор плоскости, $x>0,y>0$.

Определение. Функция $f(\bar{x})$ называется вогнутой (или выпуклой вверх), если для любых векторов $\bar{x}_{1}$ и $\bar{x}_{2}$ выполняется неравенство $$\frac{f(\bar{x}_{1})+f(\bar{x}_{2})}{2}\leq f(\frac{\bar{x}_{1}+\bar{x}_{2}}{2}) (1)$$
Замечание. Геометрический смысл вогнутости ясен из рисунка 3. Вогнутыми являются, например,  функции $y=ax+b, y=-x^{2}+bx+c, y=-1/(dx+e)$, где $dx+e>0$.Рассмотрим функцию $$f(\bar{x})=\frac{xy}{x+y}$$

Picture (2)

При $n=2$ утверждение задачи означает, что функция вогнута; при произвольном $n$ утверждение означает, что выполнено неравенство $$\frac{1}{n}\sum\limits_{i=1}^{n}{f({\bar{x}_{i}})}\leq f(\frac{1}{n}\sum\limits_{i=1}^{n}{{\bar{x}_{i}}}) (2)$$

Теорема. Для любой вогнутой (т.е. удовлетворяющей неравенству $(1)$) функции выполнено также и неравенство $(2)$.
Доказательство. Предполагая справедливость теоремы при $n=m$, докажем ее справедливость при $n=2m$. Имеем: $$f(\frac{{\bar{x}_{1}}+{\bar{x}_{2}}+…+{\bar{x}_{2m}}}{2m})=$$ $$=f(\frac{\frac{{\bar{x}_{1}}+{\bar{x}_{2}}}{2}+…+\frac{{\bar{x}_{2m-1}}+{\bar{x}_{2m}}}{2}}{m})\geq$$ $$\geq \frac{f(\frac{{\bar{x}_{1}}+{\bar{x}_{2}}}{2})+…+f(\frac{{\bar{x}_{2m-1}}+{\bar{x}_{2m}}}{2})}{m}\geq$$ $$\geq \frac{\frac{f({\bar{x}_{1}})+f({\bar{x}_{2}})}{2}+…+\frac{f({\bar{x}_{2m-1}})+f({\bar{x}_{2m}})}{2}}{m}=$$ $$=\frac {f({\bar{x}_{1}})+…+f({\bar{x}_{2m}})}{2m}$$ Таким образом теорема справедлива при $n=2m$. Положим теперь $n+p=2m$. Тогда $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}+{\bar{y}_{1}}+…+{\bar{y}_{p}}}{n+p})\geq$$ $$\geq\frac {f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+f({\bar{y}_{1}})+…+f({\bar{y}_{p}})}{n+p} (3)$$ Положим $${\bar{y}_{1}}=…={\bar{y}_{p}}=\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n}$$ тогда $${\bar{y}_{1}}+…+{\bar{y}_{p}}=\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n}\cdot p$$ Следовательно, $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}+{\bar{y}_{1}}+…+{\bar{y}_{p}}}{n+p})=f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})$$ С другой стороны, $$\frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+f({\bar{y}_{1}})+…+f({\bar{y}_{p}})}{n+p}=$$ $$=\frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+pf(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})}{n+p}$$ Из неравенства $(3)$ получаем: $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})\geq \frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})}{n}$$ Теорема доказана.

Перепишем теперь утверждение задачи при $n=2$; функция $f(\bar{x})=\frac{xy}{x+y}$, рассматриваемая на любой прямой $l$, является вогнутой. Докажем это утверждение.

Если $l\mid Oy$, то вогнутость функции $f(\bar{x})$ очевидна. Пусть $l$ задана уравнением $y=ax+b$. Тогда $$f(\bar{x})=\frac{ax^{2}+bx}{(a+1)x+b}$$ При $a=-1$ будет $b>0$, и $f(x)$ вогнута. Полагая $t=(a+1)x+b$ при $a\neq -1$, получаем: $f(\bar{x})=ct+d+\frac{e}{t}$, где $e=\frac{-b^{2}}{(a+1)^{2}}$

При $b=0$ функция $f(\bar{x})$ линейная, при $b\neq 0$, поскольку $t>0$, — строго вогнутая (т.е. при $\bar{x}_{1}\neq \bar{x}_{2}$ неравенство $(1)$ строгое).

Утверждение задачи доказано.

Достаточные условия строгой выпуклости.

Теорема (достаточное условие строгой выпуклости)

Пусть дана функция \(f(x)\), дважды дифференцируема на интервале \((a;b)\). Тогда:

  1. Если \({f}^{\prime\prime}(x) > 0\) на \((a;b)\), то функция \(f(x)\) строго выпукла вниз.
  2. Если \({f}^{\prime\prime}(x) < 0\) на \((a;b)\), то функция \(f(x)\) строго выпукла вверх.

Доказательство

Докажем первый случай, т.е. докажем что \(\forall x_{1},x_{2}\epsilon (a;b)\): \( f(\frac{x_{1} + x_{2}}{2}) < \frac{f(x_{1}) + f(x_{2})}{2}\)

Svg.1

\(x_{0} = \frac{x_{1} + x_{2}}{2}\), \(x_{2}-x_{1} = 2h\). Тогда :
\(x_{2} = x_{0} + h\)
\(x_{1} = x_{0} — h\)

Применим к функции \(f(x)\) на отрезках \([x_{1};x_{0}]\) и \([x_{0};x_{2}]\) формулу Тейлора с остатком в форме Лагранжа :
\(f(x)=f(x_{0})+\)\(\frac{{f}^{\prime}(x_{0})}{1!}(x-x_{0})+\) \(\frac{{f}^{\prime\prime}(\xi )}{2!}(x-x_{0})^{2}\), \(\xi \epsilon (x;x_{0})\).

Пусть \(x = x_{1} \Rightarrow\) \(f(x_{1}) = f(x_{0}) + \) \(\frac{{f}^{\prime}(x_{0})}{1!}(x_{1}-\)\(x_{0}) + \)
\(\frac{{f}^{\prime\prime}(\xi_{1} )}{2!}(x_{1}-x_{0})^{2}\), \(\xi_{1} \epsilon (x_{1};x_{0})\). Поскольку \(x_{1} = x_{0} — h \Rightarrow\) \(f(x_{0} — h) = f(x_{0}) + \)\(\frac{{f}^{\prime}(x_{0})}{1!}(-h) + \)\(\frac{{f}^{\prime\prime}(\xi_{1} )}{2!}(-h)^{2}\)(*).

Пусть \(x=x_{2}\) \(\Rightarrow\) \(f(x_{2})=f(x_{0})+\) \(\frac{{f}^{\prime}(x_{0})}{1!}(x_{2}-x_{0})+\)
\(\frac{{f}^{\prime\prime}(\xi_{2} )}{2!}(x_{2}-x_{0})^{2}\), \(\xi_{2} \epsilon (x_{0};x_{2})\). Поскольку \(x_{2} = x_{0}+h \Rightarrow\) \( f(x_{0}+h) = f(x_{0}) + \) \(\frac{{f}^{\prime}(x_{0})}{1!}h + \) \(\frac{{f}^{\prime\prime}(\xi_{2} )}{2!}(h)^{2}\)(**).

Суммируем полученные выражения (*) и (**), получим: \(f(x_{1}) + \) \(f(x_{2})=2f(x_{0}) + \frac{h^{2}}{2}({f}^{\prime\prime}(\xi_{1}) + \) \({f}^{\prime\prime}(\xi _{2}))\), а т.к. по условию \({f}^{\prime\prime}(x)> 0 \Rightarrow\) \( f(x_{1})+f(x_{2})=2f(x_{0})\) \(\Rightarrow\) \(\forall x_{1},x_{2}\epsilon (a;b)\): \( f(\frac{x_{1} +x_{2}}{2})<\)\( \frac{f(x_{1})+f(x_{2})}{2}\) \( \Rightarrow\) функция \(f(x)\) строго выпукла вниз.

Аналогично теорема доказывается для второго случая.

Замечание:

Условие \({f}^{\prime\prime}(x)> 0\)(или \( {f}^{\prime\prime}(x) < 0\)) не является необходимым условием строгой выпуклости вниз (вверх).

Пример:

Рассмотрим функцию \(f(x) = x^{4}\).

Найдем вторую производную данной функции: \({f}^{\prime\prime}(x) = 12x^{2}\), \({f}^{\prime\prime}(x) = 12x^{2} > 0\), \({f}^{\prime\prime}(0) = 0\) \(\Rightarrow\) условие \({f}^{\prime\prime}(x) > 0\) нарушается, поскольку \(f^{\prime\prime}(0) = 0\), однако эта функция строго выпукла вниз.

Список литературы:

Выпулость функций

Тест по теме «Выпуклость функций».

Таблица лучших: Выпулость функций

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Выпуклость функций. Геометрическая интерпретация.

 Определения:

Функция $latex=f$ определённая на $latex (a;b)$ называется выпуклой вверх, если :
$latex \forall x_{1}, x_{2} \epsilon (a;b)$, $latex \forall \alpha \epsilon (a,b) \Rightarrow f((1-\alpha)x_{1}+\alpha x_{2})\geq f((1-\alpha)x_{1})+\alpha f(x_{2})$ .

Функция $latex=f$ определённая на $latex (a,b)$ называется выпуклой вниз, если :
$latex \forall x_{1}, x_{2} \epsilon (a;b)$, $latex \forall \alpha \epsilon (a,b) \Rightarrow f((1-\alpha)x_{1}+\alpha x_{2})\leq f((1-\alpha)x_{1})+\alpha f(x_{2})$.

Функция $latex=f$ определённая на $latex (a,b)$ называется строго выпуклой вверх, если:
$latex \forall x_{1}, x_{2} \epsilon (a;b)$,$latex \forall \alpha \epsilon (a,b) \Rightarrow f((1-\alpha)x_{1}+\alpha x_{2}) > f((1-\alpha)x_{1})+\alpha f(x_{2})$

Функция $latex=f$ определённая на $latex (a,b)$ называется строго выпуклой вниз, если:
$latex \forall x_{1}, x_{2} \epsilon (a;b)$,$latex \forall \alpha \epsilon (a,b) \Rightarrow f((1-\alpha)x_{1}+\alpha x_{2}) < f((1-\alpha)x_{1})+\alpha f(x_{2})$

Замечание:

Понятие выпуклой функции было введено Иенсеном (J.L.W.V.Jensen), который исходил, однако, из более частного соотношения,а именно:
$latex f(\frac{x_{1}+x_{2}}{2})\geq (\leq) \frac{f(x_{1})+f(x_{2})}{2}$
В  случае если функция непрерывна это определение равносильно данным ранее.

 Пример:

Рассмотрим непрерывную функцию $latex f(x)=-(x-4)^{2}+4$ :
5svg

Возьмём точки $latex \left \{ 2,4,6 \right \}$ : $latex f(\frac{2+6}{2})\geq \frac{f(2)+f(6)}{2}$, т.е $latex 4 \geq 0$ $latex \Rightarrow$ функция выпукла вверх.

Геометрическая интерпретация :

Условие $latex f(\frac{x_{1}+x_{2}}{2})\geq \frac{f(x_{1}+f(x_{2})}{2}$ означает, что $latex \forall M_{1}, M_{2}$ графика функции $latex f(x)$ середина хорды лежит ниже, либо совпадает с точкой $latex M_{0}=f(\frac{x_{1}+x_{2}}{2})$.

Это можно продемонстрировать на примере функции $latex f(x)=-(x-4)^{2}+4$ :

6svg

Список литературы: