Сопряженный оператор: существование и единственность

Определение. Пусть $X,Y$ — унитарные пространства. Отображение $Y \to X$ называется линейным оператором $A^*,$ сопряженным с оператором $A,$ действующим из $X \to Y,$ если для любых $x \in X$ и $y \in Y$ выполняется условие: $$\left(Ax,y\right)_y=\left(x,A^*y\right)_x.$$

Так как определение не может гарантировать существование сопряженного оператора, введем следующую теорему.

Теорема (существование и единственность сопряженного оператора). Пусть $X,Y$ — унитарные пространства. Для всякого линейного оператора $A,$ действующего из $X \to Y,$ существует и притом единственный сопряженный ему оператор $A^*,$ действующий из $Y \to X.$

Доказательство. Единственность. В любом пространстве можно выбрать ортонормированный базис, то есть базис, векторы которого попарно ортогональны (произведение любых двух не равных векторов будет равно $0$). Тогда длины всех векторов будут равны $1.$ Обозначим этот базис как $\langle e_1, e_2,…, e_m\rangle.$ Пусть $A^*$ — линейный оператор, действующий из пространства $Y \to X,$ сопряженный с оператором $A.$ Возьмем произвольный вектор из пространства $Y.$ Образ этого вектора будет принадлежать пространству $X,$ а значит может быть представлен в виде линейной комбинации базисных векторов пространства $X.$ Тогда

$$ A^*y = \sum_{j=1}^m \left(A^*y,e_j\right)e_j =$$ (по свойству скалярного произведения) $$= \sum_{j=1}^m \overline{\left(e_j,A^*y\right)}e_j =$$ (по определению сопряженного оператора) $$= \sum_{j=1}^m \overline{\left(Ae_j,y\right)}e_j =$$ (по свойству скалярного произведения) $$= \sum_{j=1}^m \overline{ \overline{\left(y,Ae_j\right)}}e_j = \sum_{j=1}^m \left(y, Ae_j\right)e_j.$$

Получили отображение, которое может быть задано единственным образом. Прослеживается это через вектор $A^*y \in X,$ который может быть однозначно определен правой частью полученного соотношения, если применить к нему теорему о координатах вектора в ортонормированном базисе (скалярное произведение двух векторов в ортонормированном базисе равно сумме попарных произведений координат этих векторов).

Существование. С помощью полученного равенства можем определить линейное отображение $A^*,$ ибо для $\forall \alpha, \beta \in C$ и $\forall y_1,y_2 \in Y$

$$A^*\left(\alpha y_1+\beta y_2 \right) = \sum_{j=1}^m \left(\alpha y_1+\beta y_2,Ae_j \right)e_j = \\ = \alpha\sum_{j=1}^m \left(y_1,Ae_j \right)e_j + \beta\sum_{j=1}^m \left(y_2,Ae_j \right)e_j = \alpha A^*y_1+\beta A^*y_2.$$

Проверим, что оператор $A^*,$ заданный равенством выше, удовлетворяет определению сопряженного оператора, то есть $\forall x \in X, \forall y \in Y$

$$\left(Ax,y\right)=$$ (согласно разложению вектора $x$ по ортонормированному базису) $$= \left(A \sum_{i=1}^m \left(x,e_i \right)e_i,y \right) =$$ (по определению линейного оператора) $$= \left(\sum_{i=1}^m \left(x,e_i \right)Ae_j,y \right) =$$ (по свойству скалярного произведения) $$= \sum_{i=1}^m \left(x,e_i \right)\left(Ae_j,y\right).$$

Найдем скалярное произведение:

$$\left(x,A^*y\right)=$$ (согласно разложению вектора $x$ по ортонормированному базису и полученному ранее равенству) $$= \left(\sum_{i=1}^m \left(x,e_i \right)e_i, \sum_{j=1}^m \left(y, Ae_j \right)e_j \right) =$$ (по свойству скалярного произведения) $$= \sum_{i=1}^m \sum_{j=1}^m \left(x,e_i \right) \overline{\left(y,Ae_j \right)}\left(e_i,e_j \right)=$$ (по свойству скалярного произведения) $$=\sum_{i=1}^m \left(x,e_i \right) \overline{\left(y,Ae_i \right)} = \sum_{i=1}^m \left(x,e_i \right) \overline{\overline{\left(Ae_i,y\right)}} = \sum_{i=1}^m \left(x,e_i \right)\left(Ae_i,y\right).$$

Получили $$\left(Ax,y\right)=\left(x,A^*y\right).$$ Следовательно, оператор $A^*,$ определенный в равенстве, удовлетворяет определению сопряженного оператора, и полученные результаты совпадают.

Примеры решения задач

  1. Пусть оператор $A$ действует в некотором геометрическом пространстве векторов, и задан следующим равенством $$Ax=\left[a,x\right].$$ Найти сопряженный оператор.
    Решение

    Для решения возьмем произвольные вектора $x,y,$ так, что:

    $\left(Ax,y\right) = \left(\left[a,x\right],y\right) = \left \langle a,x,y \right \rangle = \left \langle x,y,a \right \rangle = \left(x,\left[y,a\right]\right) = \left(x,A^*y\right).$

    Получили, что $A^*y = \left[y,a\right] = -\left[a,y\right] = -Ay \Leftrightarrow A^*=-A.$

    Ответ: $-A.$

    [свернуть]
  2. Доказать, что если некоторое подпространство инвариантно относительно оператора $A,$ то его ортогональное дополнение инвариантно относительно оператора $A^*.$
    Решение

    Пусть $A$ — линейный оператор, и пусть $B$ — его инвариантное подпространство. Тогда $L$ — ортогональное дополнение. Пусть $x \in B, y \in L.$ Таким образом, из $Ax \in B \Rightarrow \left(Ax,y\right)=0,$ а в силу того, что по определению сопряженного оператора $\left(Ax,y\right)=\left(x,A^*y\right),$ получаем, что $\left(x,A^*y\right)=0.$ И так как $x$ это произвольный вектор из $B,$ то $A^*y \in L.$

    [свернуть]
  3. Доказать, что оператор $A^*$ — линейный.
    Решение

    Для этого необходимо проверить условие линейного оператора . А именно для $A \colon X \to Y,$ $\forall x,y \in X$ и для любого числа $\alpha$ выполняется:
    $$A^*\left(x+y\right)=A^*\left(x\right)+A^*\left(y\right),$$ $$A^*\left(\alpha x\right)= \alpha A^*\left(x\right).$$

    Проверим сначала для $A\left(x+y\right)=A\left(x\right)+A\left(y\right).$ Тогда $\forall x,y,z \in X$ имеем
    $$\left(Ax,y+z\right)=\left(x,A^*\left(y+z\right)\right).$$

    Подробно распишем правую часть

    $$\left(Ax,y+z\right)=\left(Ax,y\right)+\left(Ax,z\right)=$$ $$=\left(x,A^*y\right)+\left(x,A^*z\right)=\left(x,A^*y+A^*z\right).$$

    Получили, что $\left(x,A^*\left(y+z\right)\right)=\left(x,A^*y+A^*z\right),$ и, следовательно по условию, что равенство выполняется для $\forall x \in X$ $\Rightarrow$ $$A^*\left(y+z\right)=A^*y+A^*z.$$

    Теперь докажем вторую часть, $A^*\left(\alpha x\right)= \alpha A^*\left(x\right).$ Тогда $\forall x,y \in X$ и для любого числа $\alpha$ имеем:
    $$\left(Ax, \alpha y\right)=\left(x,A^*\left(\alpha y\right)\right).$$

    По аналогии с первой частью

    $$\left(Ax, \alpha y\right)= \overline{\alpha}\left(Ax,y\right) = \overline{\alpha}\left(x,A^*y\right) = \left(x, \alpha A^*y\right).$$

    Получаем, что $\left(x,A^*\left(\alpha y\right)\right)=\left(x, \alpha A^*y\right),$ и, следовательно по условию, что равенство выполняется для $\forall x \in X$ $\Rightarrow$ $$A^*\left(\alpha y\right)=\alpha A^*y.$$

    [свернуть]

Сопряженный оператор

Тест на знание темы «Сопряженный оператор: существование и единственность»

Смотрите также

  1. Личный конспект, составленный на основе лекций Г. С. Белозерова.
  2. Воеводин В.В. Линейная алгебра. М.: Наука, 1994, Глава 9, $§$ 75, «Сопряженный оператор» (стр. 241)
  3. Фаддеев Д.К. Лекции по алгебре. М.: Наука, 1984, Глава 13, $§$ 4, «Евклидово и унитарное пространства» (стр. 356)
  4. Федорчук В.В. Курс аналитической геометрии и линейной алгебры. М.: изд. московского ун-та, 1990, Часть 2, Глава 5, $§$ 30, «Линейные отображения евклидовых пространств. Изоморфизмы. Сопряженные операторы»(стр. 269-271)

Определение и примеры линейных операторов. Действия над линейными операторами. Задания

На странице «Определение и примеры линейных операторов. Действия над линейными операторами. Теория» Вы можете ознакомиться с теоретическим материалом.

Упражнение 1.
Проверка оператора на линейность

Проверить, является ли оператор $A$ линейным в $R^3$
$Ax=\left(x_{2}+ x_{3}, 5x_{2}-x_{1}, x_{1}+8x_{3}\right)$

Решение

Оператор является линейным, если $\forall a,b\in \mathbb{R}^{3}$, $\forall \alpha\in \mathbb{R}$ выполняются условия:

  1. $A\left(a+b\right)=Aa+Ab$
  2. $A\left(\lambda a\right)=\lambda Aa$

Проверим условие 1:
$A\left(a+b\right)=A\left(a_1+b_1,a_2+b_2,a_3+b_3\right)=$
$=\left(a_2+b_2+a_3+b_3,5a_2+5_b2-a_1-b_1,a_1+b_1+8a_3+8b_3\right)=$
$=\left(a_2+a_3,5a_2-a_1,a_1+8a_3\right)+\left(b_2+b_3,5_b2-b_1,b_1+8b_3\right)=$
$=A\left(a_1,a_2,a_3\right)+A\left(b_1,b_2,b_3\right)=Aa+Bb$

Проверим условие 2:
$A\left(\lambda a\right)=A\left(\lambda a_{1},\lambda a_{2},\lambda a_{3}\right)=\left(\lambda a_{2}+\lambda a_{3},5\lambda a_{2}-\lambda a_{1},\lambda a_{1}+8\lambda a_{3}\right)=$
$=\lambda\left(a_{2}+a_{3},5a_{2}-a_{1},a_{1}+8a_{3}\right)=\lambda Aa$

Ответ: оба условия выполняются, значит оператор $A$ — линейный.

[свернуть]

Упражнение 2.
Найти значение выражения $4A+7B$

$A,B$ — линейные операторы из $\Omega\left(\mathbb{R}^3\right)$, $A\left(x_1,x_2,x_3\right)=\left(x_1-x_2+x_3,x_2,x_3-x_1\right)$, $B\left(x_1,x_2,x_3\right)=\left(0,x_2,1\right)$

Решение

$4A\left(x_1,x_2,x_3\right)=\left(4x_1-4x_2+4x_3,4x_2,4x_3-4x_1\right)$
$7B\left(x_1,x_2,x_3\right)=\left(0,7x_2,7\right)$
$4A+7B=\left(4x_1-4x_2+4x_3,11x_2,4x_3-4x_1+7\right)$
Ответ: $4A+7B=\left(4x_1-4x_2+4x_3,11x_2,4x_3-4x_1+7\right)$

[свернуть]

Упражнение 3.
Найти значение выражения $B\cdot 4A$

$A,B$ — линейные операторы из $\Omega\left(\mathbb{R}^3\right)$, $A\left(x_1,x_2,x_3\right)=\left(0,x_2+\frac{1}{4}x_3,x_3\right)$, $B\left(x_1,x_2,x_3\right)=\left(x_1+x_3,x_2,1\right)$

Решение

$4A\left(x_1,x_2,x_3\right)=\left(0,4x_2+x_3,4x_3\right)$
$B\cdot 4A\left(x_1,x_2,x_3\right)=\left(4x_3,4x_2+x_3,1\right)$
Ответ: $B\cdot 4A\left(x_1,x_2,x_3\right)=\left(4x_3,4x_2+x_3,1\right)$

[свернуть]

Упражнение 4.
Найти значение выражения $Ax-3Bx$

$A, B$ — линейные операторы из $\Omega\left(M_2\left(\mathbb{R}\right)\right)$,
$A=\begin{Vmatrix}2& 2\\ 0 & 0\end{Vmatrix}$, $B=\begin{Vmatrix}1 & 1 \\ 2 & 0\end{Vmatrix}$

Решение

$Ax=\begin{Vmatrix}2& 2\\ 0 & 0\end{Vmatrix}\cdot\begin{Vmatrix}x_1& x_2\\ x_3 & x_4\end{Vmatrix}=$$\begin{Vmatrix}2x_1+2x_3& 2x_2+2x_4\\ 0 & 0\end{Vmatrix}$

$3Bx=\begin{Vmatrix}3& 3\\ 6 & 0\end{Vmatrix}\cdot\begin{Vmatrix}x_1& x_2\\ x_3 & x_4\end{Vmatrix}=\begin{Vmatrix}3x_1+3x_3& 3x_2+3x_4\\ 6x_1 & 6x_2\end{Vmatrix}$

$Ax-3Bx=\begin{Vmatrix}2x_1+2x_3& 2x_2+2x_4\\ 0 & 0\end{Vmatrix}-$$\begin{Vmatrix}3x_1+3x_3& 3x_2+3x_4\\ 6x_1 & 6x_2\end{Vmatrix}=$

$=\begin{Vmatrix}-x_1-x_3& -x_2-x_4\\ -6x_1 & -6x_2\end{Vmatrix}=-\begin{Vmatrix}x_1+x_3& x_2+x_4\\ 6x_1 & 6x_2\end{Vmatrix}$

Ответ: $Ax-3Bx=-\begin{Vmatrix}x_1+x_3& x_2+x_4\\ 6x_1 & 6x_2\end{Vmatrix}$

[свернуть]

Определение и примеры линейных операторов

Выполните тест и проверьте хорошо ли Вы усвоили материал.


Таблица лучших: Определение и примеры линейных операторов

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список использованной литературы:

Определение и примеры линейных операторов. Действия над линейными операторами. Теория

Определение

Пусть $\left(X,\mathbb{P}\right)$, $\left(Y,\mathbb{P}\right)$ — линейные пространства.
Отображение $A:X\rightarrow Y$ называется линейным оператором, если $\forall a,b\in X$ $\forall\alpha,\beta\in \mathbb P$ выполняется равенство:
$A\left(\alpha a+\beta b\right)=\alpha A a+\beta A b$.

Примеры часто используемых операторов:

  • $\theta:X\rightarrow Y$ — нулевой оператор $\forall x\in X$ $\theta x=0$;
  • $\varepsilon:X\rightarrow X$ — тождественный (единичный) оператор $\forall x\in X$ $\varepsilon x=x$;
  • $\alpha\varepsilon:X\rightarrow X$ — скалярный оператор $\forall x\in X$ $\left(\alpha\varepsilon\right)x=\alpha x,$ $\alpha\in\mathbb{P}$;
  • $\rho:X\rightarrow L_{1}$ — оператор прямого проектирования, где $X=L_{1}+L_{2}$,
    $\forall x\in X$ $x=x_{1}+x_{2}$, $x_{1}\in L_{1}$, $x_{2}\in L_{2}$, $\rho x=x_{1}$.

Операции над линейными операторами

Сумма линейных операторов

Пусть $A,B$ — линейные операторы из $\Omega\left(X,Y\right)$
$C:X\rightarrow Y$, $C=A+B$
$Cx=\left(A+B\right)x=Ax+Bx$ $\forall x\in X$.

Произведение оператора и скаляра

Пусть $A$ — линейный оператор из $\Omega\left(X,Y\right)$, $\lambda\in\mathbb{P}$.
Тогда произведением $\lambda A$ называется отображение $C:X\rightarrow Y$
$\forall x\in X$ $Cx=\left(\lambda A\right)x=\lambda\left(Ax\right)$.

Произведение линейных операторов

Пусть $A,B$ — линейные операторы из $\Omega\left(X,Y\right)$ и из $\Omega\left(Y,Z\right)$
$X$, $Y$, $Z$ — линейные пространства над полем $\mathbb{P}$.
Оператор $BA:X\rightarrow Z$, определяемый соотношением $BAx=B\left(Ax\right)$ $\forall x\in X$,
называется произведением операторов $A$ и $B$.

Линейные операторы

Пройдите тест, чтоб узнать насколько хорошо Вы усвоили материал.


Таблица лучших: Линейные операторы

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список использованной литературы: