М1736. Шахматные кони

Задача из журнала «Квант» (2000 год, 4 выпуск)

Условие

Какое наибольшее число коней можно расставить на доске $5\times5$ так, чтобы каждый из них бил ровно двух других?

Решение

Рисунок 1

На рисунке $1$ приведено расположение $16$ коней, удовлетворяющее условию задачи. Покажем, что большее число коней расставить нельзя. Заметим, что количество коней, расположенных на черных клетках, равно количеству коней, расположенных на белых клетках. Значит, если число пустых белых клеток равно $n$, то число пустых черных клеток равно $n+1$.

Рисунок 2

Заметим, что для оптимального расположения коней центральная клетка пуста, так как в противном случае из восьми клеток, которые бьет конь, стоящий на центральном поле, ровно шесть пустых белых. Отсюда $n\geqslant6$, и число коней не превосходит $25-n-(n+1)\leqslant12$.

Рисунок 3

Разобьем белые клетки на четыре группы так, как показано на рисунке $2$ (клетки одной группы отмечены одинаковыми цифрами). Покажем, что для оптимального расположения по крайней мере одна клетка каждой группы пуста, отсюда будет следовать, что $n\geqslant4$ . Предположим противное: например, что на всех клетках группы $3$ стоят кони. Обозначим их буквами $a$, $b$ и $с$ (рис.3). Конь, стоящий на клетке $а$, бьет клетки $f$, $d$ и центральную. Но, как было показано выше, центральная клетка пуста, значит, на клетках $f$ и $d$ стоят кони.

Аналогично можно показать, что на клетках $e$ и $g$ тоже стоят кони. Но тогда конь, стоящий на клетке $c$, бьет четырех коней, расположенных на $d$, $e$, $f$ и $g$, что противоречит условию.

Итак, число пустых белых клеток $n\geqslant4$. Значит, число коней не больше

$25-n-(n+1)\leqslant12$.

Ответ: $16$.

М. Горелов

6.2 Интегрирование по частям и замена переменной

Теорема (формула интегрирования по частям).
Пусть функции $u(x)$ и $v(x)$ дифференцируемы на интервале $I$. Если одна из функций $u(x)v'(x)$ или $u'(x)v(x)$ имеет первообразную на интервале $I$, то на этом интервале имеет первообразную и другая функция, причем справедливо равенство $$\begin{equation}\label{eq:exp1}\int u(x)v'(x)dx=u(x)v(x)-\int u'(x)v(x)dx\end{equation}.$$

Доказательство сразу следует из правила дифференцирования произведения. Действительно, пусть $u(x)v'(x)$ имеет первообразную. Тогда, по правилу дифференцирования произведения, имеем $$[u(x)v(x)]’=u'(x)v(x)+u(x)v'(x).$$
Отсюда получаем, что $u'(x)v(x)$ является разностью двух производных функций, т. е. разностью двух функций, имеющих первообразные. Поэтому она сама также является производной, т. е. имеет первообразную, и справедливо равенство $\eqref{eq:exp1}$.

Замечание 1.
Коротко правило интегрирования по частям может быть записано так:
$$\int udv=uv-\int vdu.$$
Действительно, в этой записи используется формула для вычисления дифференциала функции $du(x)=u'(x)dx$.

Замечание 2.
Если одна из функций дифференцируема, а другая имеет первообразную, то их произведение (производной на функцию, имеющую первообразную) не обязано иметь первообразную. Такой пример приводится сразу после этого замечания. Поэтому в формулировке теоремы нужно предполагать наличие первообразной у одной из функций $u'(x)v(x)$ или $u(x)v'(x)$.

Утверждение.
Существуют дифференцируемая функция $u$ и имеющая первообразную функция $v$, такие, что $u’v$ не имеет первообразной.

Достаточно показать, что квадрат функции, имеющей первообразную, может не иметь первообразной.
Положим $f(x)=|x|^\alpha \sin\displaystyle\frac{1}{x}$, $x\neq0$, $f(0)=0$. При $\alpha>1$ функция $f$ дифференцируема на $\mathbb{R}$ и ее производная равна
$$\begin{equation*}f'(x) = \begin{cases}\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{|x|}-|x|^{\alpha-2}\cos\displaystyle\frac{1}{x},\;  x\neq0, \\ 0,\;  x=0. \end{cases}\end{equation*}$$
Поскольку функция $\alpha|x|^{\alpha-1}\sin\displaystyle\frac{1}{x}\equiv\varphi(x) (x\neq0)$, $\varphi(0) = 0$ непрерывна на $\mathbb{R}$, а значит, имеет первообразную на $\mathbb{R}$, то функция
$$v(x)\equiv|x|^{\alpha-2}\cos\displaystyle\frac{1}{x}=\varphi(x)-f'(x) (x\neq0),\;\; v(0) = 0,$$
имеет первообразную на $\mathbb{R}$ как разность двух функций — $\varphi(x)$ и $f'(x)$, имеющих первообразные на $\mathbb{R}$.
Покажем, что при надлежащем выборе числа $\alpha>1$ функция $v^2(x)$ не имеет первообразной на $\mathbb{R}$. Предположим противное. Пусть существует такая дифференцируемая на $\mathbb{R}$ функция $F$, что для всех $x\in \mathbb{R}$ справедливо равенство
$$F'(x)=v^2(x)=|x|^{2(\alpha-2)}\cos^2\displaystyle\frac{1}{x},\;\; (x\neq0),\;\; F'(0)=0.$$
Для $k = 1, 2, \ldots$ обозначим
$$[a_k, b_k] = \left[\displaystyle\frac{4}{(4k+1)\pi}, \displaystyle\frac{4}{(4k-1)\pi}\right].$$
Если $x\in[a_k, b_k]$, то
$$\displaystyle\frac{1}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right], \\ \displaystyle\frac{2}{x}\in\left[\displaystyle\frac{(4k-1)\pi}{4}, \displaystyle\frac{(4k+1)\pi}{4}\right]=\left[2k\pi-\displaystyle\frac{\pi}{2}, 2k\pi+\displaystyle\frac{\pi}{2}\right].$$
Поэтому для $x\in[a_k, b_k]$ имеем
$$\cos^2\displaystyle\frac{1}{x}=\displaystyle\frac{1+\cos\displaystyle\frac{2}{x}}{2}\geqslant\displaystyle\frac{1}{2},$$
так что $F'(x)\geqslant\displaystyle\frac{1}{2}x^{2(\alpha-2)}, x\in[A_k, b_k]$. По теореме Лагранжа получим
$$F(b_k)-F(a_k)=F'(\xi_k)(b_k-a_k)\geqslant\displaystyle\frac{1}{2}\xi^{2(\alpha-2)}_k(b_k-a_k)\geqslant\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k,$$
где $\xi_k\in[a_k, b_k]$, а число $\alpha>1$ будет выбрано так, что $\alpha<2$. Отсюда получим
$$F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Заметим, что отрезки $[a_k, b_k]$ попарно не пересекаются и, так как $F'(x)\geqslant0$, то функция $F$ не убывает. Значит,
$$F(b_{k+1})\leqslant F(a_k)\leqslant F(b_k)-\displaystyle\frac{b_k-a_k}{2}b^{2(\alpha-2)}_k.$$
Отсюда следует, что
$$\begin{equation}\label{eq:exp2}F(b_{k+1})\leqslant F(b_1)-\displaystyle\frac{1}{2}\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s.\end{equation}$$
Оценим последнюю сумму справа. Имеем
$$b_s-a_s=\displaystyle\frac{8}{\pi}\displaystyle\frac{1}{(4s+1)(4s-1)},$$
так что
$$\sum^{k}_{s=1}(b_s-a_s)b^{2(\alpha-2)}_s=\\=c_s\sum^{k}_{s=1}\displaystyle\frac{1}{(4s+1)(4s-1)}\left(\displaystyle\frac{1}{4s-1}\right)^{2(\alpha-2)}\geqslant c’_s\sum^{k}_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}.$$
Если $2\alpha-2\leqslant1$, т. е. $\alpha\leqslant\displaystyle\frac{3}{2}$, то $\sum\limits^k_{s=1}\displaystyle\frac{1}{s^{2\alpha-2}}\rightarrow\infty(k\rightarrow\infty)$. Поэтому из $\eqref{eq:exp2}$ следует, что $F(b_{k+1})\rightarrow-\infty$ при $k\rightarrow\infty$. Но поскольку $b_{k+1}\rightarrow+0 (k\rightarrow\infty)$, то это противоречит непрерывности функции $F$ в точке $x_0=0$ справа, которая вытекает из дифференцируемости функции $F$ в нуле.

Пример 1.
$\int x e^x dx=\begin{bmatrix}u=x, & dv=e^x dx\\du=dx, & v=e^x\end{bmatrix}=x e^x-\int e^x dx=x e^x-e^x+C.$

Пример 2. 
$\int x\cos x dx=\begin{bmatrix}u=x, & dv=\cos x dx\\du=dx, & v=\sin x\end{bmatrix}=\\=x\sin x-\int\sin x dx=x\sin x+\cos x+C.$

Пример 3. 
$\int x\ln x dx=\begin{bmatrix}u=\ln x, & dv=x dx\\du=\displaystyle\frac{dx}{x}, & v=\displaystyle\frac{x^2}{2}\end{bmatrix}=\\=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{1}{2}\int x dx=\displaystyle\frac{x^2}{2}\ln x-\displaystyle\frac{x^2}{4}+C.$

Следующий пример показывает такой способ применения формулы интегрирования по частям, когда в правой части появляется такой же интеграл, как и в левой части. Тогда искомый интеграл может быть найден из полученного равенства.

Пример 4. 
$\int e^x\cos xdx=\begin{bmatrix}u=e^x, & dv=\cos xdx\\du=e^x dx, & v=\sin x\end{bmatrix}=\\=e^x\sin x-\int e^x\sin xdx=e^x\sin x-\begin{bmatrix}u=e^x, & dv=\sin xdx\\du=e^x dx, & v=-\cos x\end{bmatrix}=\\=e^x\sin x+e^x\cos x-\int e^x\cos xdx.$
Из этого равенства находим
$$\int e^x\cos xdx=\displaystyle\frac{e^x}{2}[\sin x+\cos x] + C.$$

Теорема (о замене переменной в интеграле). Пусть функция $f$ имеет первообразную на интервале $I$, т. е.
$$\int f(t)dt=F(t)+C.$$
Пусть, далее, функция $\varphi$ дифференцируема на интервале $\Delta$ и $\varphi(\Delta)\subset I$. Тогда справедливо равенство
$$\int f(\varphi(x))\varphi'(x)dx=F(\varphi(x))+C.$$

Действительно, по правилу дифференцирования сложной функции имеем
$$[F(\varphi(x))]’=F'(\varphi(x))\varphi'(x)=f(\varphi(x))\varphi'(x).$$

Пример 1. $\int\sin^3 xdx=\int\sin x(1-\cos^2 x)dx=[\cos x = t, dt =-\sin xdx]=\\=\int(t^2-1)dt=\displaystyle\frac{t^3}{3}-t+C=\displaystyle\frac{\cos^3 x}{3}-\cos x+C.$

Пример 2. $\int\displaystyle\frac{dx}{1+e^x}=\begin{bmatrix}\text{преобразуем} & \displaystyle\frac{1}{1+e^x}=\displaystyle\frac{1}{e^x(e^-x+1)}=\displaystyle\frac{e^{-x}}{1+e^{-x}}\\ \text{положим} & 1+e^{-x}=t, dt=-e^{-x}dx\end{bmatrix}=-\int\displaystyle\frac{dt}{t}=\\=-\ln|t|+C=-\ln(1+e^{-x})+C=-\ln\displaystyle\frac{1+e^x}{e^x}+C=x-\ln(1+e^x)+C.$

Замечание. Мы использовали равенство $\int\displaystyle\frac{dx}{x}=\ln|x|+C$. Это равенство следует применять отдельно для промежутков $(0, +\infty)$ и $(-\infty, 0)$.
При $x>0$ оно справедливо по той причине, что $|x|=x,$ $(\ln x+C)’=\displaystyle\frac{1}{x}$.
Если же $x<0$, то $|x|=-x$, $\ln(-x)+C)’=\displaystyle\frac{1}{-x}\cdot(-1)=\displaystyle\frac{1}{x}$, так что и в этом случае равенство верно.

Итак, если исходный интеграл представлен в виде $\int f(\varphi(x))\varphi'(x)dx$, то, выполняя замену переменной $t=\varphi(x)$, мы приходим к интегралу $\int f(t)dt$. Часто замену переменной в интеграле $\int g(x)dx$ применяют в виде $x = \psi(t)$, затем вычисляют интеграл по $t$, а чтобы вернуться к старой переменной $x$, нужно выразить новую переменную $t$ через $x$.

Пример. Пусть $I=\int\sqrt{1-x^2}dx$.
Для вычисления этого интеграла положим $x=\sin t$. Тогда
$$dx=\cos tdt, \sqrt{1-x^2}=\sqrt{1-\sin^2 t}=\sqrt{\cos^2 t}=\cos t.$$
Подставляя это в исходный интеграл, получаем
$$I=\int\cos^2 tdt=\int\displaystyle\frac{1+\cos 2t}{2}dt=\displaystyle\frac{t}{2}+\displaystyle\frac{\sin 2t}{4}+C.$$
Из равенства $x=\sin t$ имеем $t=\arcsin x$, так что
$$I=\displaystyle\frac{\arcsin x}{2}+\displaystyle\frac{x\sqrt{1-x^2}}{2}+C.$$
Вычислим этот интеграл еще одним способом, основанным на применении формулы интегрирования по частям.
$$I=\int\sqrt{1-x^2}dx=\begin{bmatrix}u=\sqrt{1-x^2}, & dv=dx\\du=-\displaystyle\frac{x}{\sqrt{1-x^2}}dx, & v=x\end{bmatrix}=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2}{\sqrt{1-x^2}}dx=\\=x\sqrt{1-x^2}+\int\displaystyle\frac{x^2-1+1}{\sqrt{1-x^2}}dx=x\sqrt{1-x^2}-I+\int\displaystyle\frac{dx}{\sqrt{1-x^2}}.$$
Воспользовавшись теперь равенством $\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x+c$, вытекающим из того, что $(\arcsin x+C)’=\displaystyle\frac{1}{\sqrt{1-x^2}}$, получим $I=x\sqrt{1-x^2}-I+\arcsin x$. Отсюда следует
$$I=\displaystyle\frac{1}{2}[x\sqrt{1-x^2}+\arcsin x]+C.$$

Решение примеров

Интегрирование по частям:

  1. $\int\text{arctg}\:xdx$
    Решение

    $\int\text{arctg}\:xdx=\begin{bmatrix}\text{arctg}\:{x}=u, du=\displaystyle\frac{dx}{1+x^2}\\dx=dv, v=x\end{bmatrix}=x\:\text{arctg}\: {x}-\int\displaystyle\frac{xdx}{1+x^2}=\\=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\int\displaystyle\frac{dx^2}{1+x^2}=x\:\text{arctg}\: {x}-\displaystyle\frac{1}{2}\ln(1 + x^2) + C.$

  2. $\int x\sin{x}dx$
    Решение

    $\int x\sin{x}dx=\begin{bmatrix}x=u, du=dx\\ \sin{x}=dv, v=-\cos{x}\end{bmatrix}=-x\cos{x}+\int\cos{x}dx=\\=-x\cos{x}+\sin{x}+C.$

  3. $\int xe^{x}dx$
    Решение

    $\int xe^{x}dx=\begin{bmatrix}u=x, du=dx\\dv=e^{x}dx, v=e^x\end{bmatrix}=xe^x-\int e^{x}dx=xe^x-e^x+C.$

Замена переменной:

  1. $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}$
    Решение

    $\int\displaystyle\frac{dx}{\sqrt{e^x-1}}=\begin{bmatrix}\sqrt{e^x-1}=t, x=\ln(t^2+1)\\dx=\displaystyle\frac{2tdt}{t^2+1}\end{bmatrix}=2\int\displaystyle\frac{tdt}{t(t^2+1)}=\\=2\int\frac{dt}{t^2+1}=2\: \text{arctg}\: t+C.$

  2. $\int\displaystyle\frac{x^{2}dx}{5-x^6}$
    Решение

    $\int\frac{x^2dx}{5-x^6}=\begin{bmatrix}x^3=t\\dt=3x^2dx\\x^6=t^2\end{bmatrix}=\frac{1}{3}\int\frac{dt}{5-t^2}=\frac{1}{3}\int\frac{dt}{(\sqrt{5})^2-t^2}=\\=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+t}{\sqrt{5}-t}\right|+C=[t=x^3]=\frac{1}{6\sqrt{5}}\ln\left|\frac{\sqrt{5}+x^3}{\sqrt{5}-x^3}\right|+C.$

Интегрирование по частям и замена переменной

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Интегрирование по частям и замена переменной»

Таблица лучших: Интегрирование по частям и замена переменной

максимум из 18 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.23, 31)
  2. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001  (стр. 277, 281)
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр. 461, 464)

М1752. Восемь шахматных ладей

Задача из журнала «Квант» (2000 год, 6 выпуск)

Условие

Сколькими способами можно расставить восемь ладей на черных полях шахматной доски так, чтобы они не били друг друга?

Решение

Если не выдвигать ограничений на цвет полей, то $8$ ладей допустимым образом можно расставить $8!$ различными способами; вообще для доски размером $n\times{n}$ число способов расстановки n ладей равно числу перестановок из n элементов, т.е. $n!$.

Но нам нужно учесть ограничение на цвет полей: ладьи расставляются только на черных полях доски. Перекрасим черные поля доски в красный и синий цвета. При этом всякое черное поле, расположенное на нечетной вертикали (но на четной горизонтали), сделаем красным, а всякое черное поле, расположенное на четной вертикали (но на нечетной горизонтали), сделаем синим (см. рисунок). Из $8$ ладей, стоящих допустимым образом на черных полях, $4$ ладьи окажутся на красных полях, а остальные $4$ ладьи – на синих.

Красные поля образуют как бы отдельную шахматную доску размером $4\times4$, поэтому число способов расстановки $4$ ладей на красных полях равно $4! = 24$. То же можно сказать о синих полях.

В результате число способов для допустимых расстановок $8$ ладей равно $24^2.$

Ответ: $24^2$.

В. Произволов