Достаточные условия экстремума

Экстремумы функций одной переменной

Определение:

Функция [latex]f:\mathbb{E} \subset \mathbb{R}\rightarrow \mathbb{R}[/latex], имеет во внутренней точке [latex]x_{0}[/latex]:

  • Локальный минимум, если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x)\ge f(x_{ 0 })[/latex]
  • Строгий локальный минимум, если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x) > f(x_{ 0 })[/latex]
  • Локальный максимум если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x)\le f(x_{ 0 })[/latex]
  • Строгий локальный максимум, если [latex]\exists U(x_{0}):\forall x\in \dot {U}(x_{0}) f(x) < f(x_{ 0 })[/latex]

Поиск локальных и абсолютных экстремумов — важная практическая задача, породившая широкий спектр методов оптимизации. Изучение свойств и условий существования локального экстремума функций в одномерном случае создает прочный фундамент, упрощающий изучение аналогичного материала в анализе функций многих переменных.


Достаточные условия экстремума в терминах первой производной

Читать далее «Достаточные условия экстремума»

Достаточные условия экстремума функции двух переменных

Дифференциальное исчисление функций многих переменных — важный раздел анализа, имеющий немало приложений в физике, инженерии и прикладной математике. Существенное количество практических задач формулируется в терминах функций от двух переменных — явном выражении поверхностей в пространстве [latex]\mathbb{R}^{3}[/latex]. В классических курсах анализа их изучают с более общих позиций, рассматривая достаточные критерии экстремума функций вида [latex]f: \mathbb{R}^{n} \rightarrow \mathbb{R}[/latex] (также называемых скалярными полями), в терминах которых ведётся дальнейшее изложение.


Определение

Говорят, что функция [latex]f: \mathbb{E} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}[/latex] имеет во внутренней точке [latex]x_{0}[/latex]

  • локальный минимум, если [latex]\exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \le f(x_{0})[/latex].
  • локальный максимум, если [latex]\exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \ge f(x_{0})[/latex].

Заменой неравенств на строгие получаем условия соответственно строгого локального минимума и максимума.


Определение

Якобианом векторного поля [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \forall x \in \mathbb{R}^{m} f(x) = (f_{1}(x),…,f_{m}(x))[/latex], дифференцируемого в точке [latex]x[/latex] и непрерывного в некоторой её окрестности [latex]U(x) \in \mathbb{R}^{m}[/latex]называют линейный оператор [latex]\mathbf{J}[/latex], описывающий наилучшее линейное приближение функции в некоторой окрестности точки [latex]x[/latex] и имеющий матрицу вида:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f_{ 1 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 1 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{ 1 } }{ \partial x_{ m } } (x) \\ \frac { \partial f_{ 2 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 2 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{2} }{ \partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial f_{m} }{ \partial x_{ 1 } } (x) & \frac { \partial f_{m} }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{m} }{ \partial x_{ m }} (x) \end{Vmatrix} $$

— так называемую матрицу Якоби (матрица касательного отображения). Для скалярного поля матрица Якоби имеет вид:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f }{ \partial x_{ 1 } } (x) & \frac { \partial f }{ \partial x_{ 2 } } (x) & … & \frac { \partial f }{ \partial x_{ m } } (x) \end{Vmatrix} $$

Определение

Гессианом скалярного поля [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}[/latex], дважды дифференцируемого по всем аргументам в точке [latex]x=(x^{1},…,x^{m}) \in \mathbb{R}^{m}[/latex], называют симметрическую квадратичную форму [latex]H(x)=\sum _{ i=1 }^{ m }{ \sum _{ j=1 }^{ m }{ h_{ij}x_{i}x_{j} } } [/latex], описывающую наилучшее квадратичное приближение функции в некоторой окрестности точки [latex]x[/latex] и имеющую матрицу вида:

$$ \mathbf{H}_{f}(x) = \begin{Vmatrix} \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }^{ 2 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ m } } (x) \\ \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }^{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ m }^{ 2 } } (x) \end{Vmatrix} $$

— так называемую матрицу Гессе, определитель которой обычно подразумевается под Гессианом. Матрица Гессе также описывает локальную кривизну скалярного поля.


Утверждение

Поведение функция [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}[/latex], дважды дифференцируемой в точке [latex]x=(x^{1},…,x^{m}) \in \mathbb{R}^{m}[/latex] и непрерывной в некоторой окрестности [latex]U(x) \subset \mathbb{R}[/latex] этой точки, характеризуется формулой:

$$ f(\mathbf{x}+\mathbf{\Delta x}) \approx f(x) + \mathbf{J(x)\Delta x} + \frac{1}{2} \mathbf{\Delta x^{T} H(x) \Delta x} $$

Достаточное условие экстремума в терминах частных производных

Для того, чтобы функция [latex]f: U(x_{0}) \rightarrow \mathbb{R}[/latex], дважды дифференцируемая по всем аргументам в точке [latex]x_{0}=(x_{0}^{1},…,x_{0}^{m}) \in \mathbb{R}^{m}[/latex], в ней имела экстремум достаточно, чтобы её Гессиан был знакоопределён, причем, положительная определённость влечёт наличие в точке строгого локального минимума, отрицательная определённость — строгого локального максимума.

Спойлер

Воспользуемся разложением в ряд Тейлора, обозначив вектор сдвига как [latex]\mathbf{h}=(h_{1},…,h_{m})[/latex]. Тогда

$$ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \frac{1}{2!} \mathbf{h^{T} H(x) h} + o((\left\| \mathbf{h} \right\|)^{2}),\left\| h \right\| =\sqrt { \sum _{ i=1 }^{ n }{ h_{ i }^{ 2 } } } \\ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}}h_{i}h_{j}}} + o((\left\| \mathbf{h} \right\|)^{2}) \\ f(\mathbf{x}+\mathbf{h}) — f(\mathbf{x}) = \frac {1}{2!} \left\| \mathbf{h} \right\|^{2}\left[\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}} + o(1) \right] $$

Отсюда следует, что знак выражения в левой части, позволяющий судить о наличии или отсутствии экстремума в точке [latex]\mathbf{x}[/latex], определяется знаком выражения в квадратных скобках. Посмотрим на неё внимательнее: пусть [latex]\mathbf{h} != 0[/latex], тогда вектор [latex]{ e }=\left( \frac { h_{ 1 } }{ \left\| { h } \right\| } ,\frac { h_{ 2 } }{ \left\| { h } \right\| } ,…,\frac { h_{ m } }{ \left\| { h } \right\|} \right) [/latex] имеет единичную норму [latex]\left\| { e } \right\| = 1[/latex], каким бы он ни был. Форма [latex]\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}}[/latex] непрерывна на [latex]\mathbb{R}^{m}[/latex] как однородный многочлен второй степени от координат [latex]\mathbf{h}[/latex] в силу непрерывности вторых производных [latex]f[/latex] в окрестности [latex]\mathbf{x}[/latex]. Квадратичная форма непрерывна и на единичной сфере [latex]S(0;1)=\left\{ x \in \mathbb{R}^{m}| \left\| { x } \right\| \le 1 \right\} [/latex]. Приниципиальный интерес этот факт представляет по той причине, что единичная сфера — компакт, а свойства скалярных функций, непрерывных на компакте, хорошо известны и сыграют важную роль. В частности, непрерывная на компакте функция достигает на нём своих точных верхней и нижней граней [latex]m[/latex] и [latex]M[/latex].
Если форма положительно определена, то [latex]0 0[/latex], что [latex]\forall y: \left\| y \right\| < \delta \quad o (1)=\alpha (y) < m \Rightarrow o (1) < m 0[/latex].
Доказательство для случая отрицательно определённой квадратичной формы симметрично приведенному.
Докажем далее, что значения разных знаков, принимаемые формой в окрестности данной точки, являются достаточным условием отсутствия в ней экстремума функции. Сохраняя обозначения предыдущего пункта, назовём [latex]\mathbf{e_{m}}[/latex] и [latex]\mathbf{e_{M}}[/latex] точки единичной сфера, в которых форма достигает значений [latex]m[/latex] и [latex]M[/latex] соответственно, причем пусть [latex]m < 0 < M[/latex].
Вновь выпишем разложение в ряд Тейлора функции [latex]f[/latex], взяв за вектор сдвига вектор [latex]t\mathbf{e_{m}}[/latex], где число [latex]t[/latex] подобрано таким образом, чтобы [latex]\mathbf{x}+t\mathbf{e_{m}} \in U(x)[/latex]:

$$ f({ x }+{ h })-f({ x })=\frac { 1 }{ 2! } \left\| { te_{ m } } \right\| ^{ 2 }\left[ m+o (1) \right] =\frac { 1 }{ 2! } (\left| t \right| \left\| { e_{ m } } \right\| )^{ 2 }\left[ m+o (1) \right] =\frac { 1 }{ 2! } t^{ 2 }\left[ m+o (1) \right] $$

Аналогично рассуждениям предыдущего пункта, рассмотрим случай [latex]\text{sign}(o(1))=1[/latex]: [latex]\lim _{ \left\| t \right\| \rightarrow 0}{ \alpha (t\mathbf{e_{m}}) } = 0 \Rightarrow \exists \delta > 0: \forall t m[/latex]. Тогда значение в квадратных скобках, как и выражение в левой части, неположительно. В ходе аналогичных рассуждений получим двойственную ситуацию для [latex]\mathbf{e_{M}}[/latex]. Следовательно, в любой окрестности [latex]U(\mathbf{x})[/latex] точки [latex]\mathbf{x}[/latex] функция [latex]f[/latex] принимает значения, как большие, так и меньше [latex]f(\mathbf{x})[/latex], следовательно, в точке [latex]\mathbf{x}[/latex] экстремума быть не может по определению.

[свернуть]

Замечание 1

Условие не является необходимым, так как ничего не говорит о случае, когда квадратичная форма полуопределена, т.е. является и неположительна или неотрицательна, т.е. содержит критические точки, не являющиеся экстремальными, строго больше или меньше нуля на всех векторах окрестности.

Спойлер

Исследуем на экстремум функцию [latex]f(x,y)=x^{4}+y^{4}-2x^{2}[/latex]. Отыщем критические точки согласно необходимому условию:

$$ \begin{cases} \frac { \partial f }{ \partial x } (x,y)=4x^{ 3 }-4x=0, \\ \frac { \partial f }{ \partial x } (x,y)=4y^{ 3 }=0; \end{cases} $$

Решаяя систему, получаем точки: [latex](-1,0),(0,0),(1,0)[/latex]. Поскольку смешанные производные существуют и непрерывны и

$$ \frac { \partial f^{ 2 } }{ \partial x^{ 2 } } (x,y)=12x^{ 2 }-4, \frac { \partial f^{ 2 } }{ \partial y\partial x } (x,y)=0, \frac { \partial f^{ 2 } }{ \partial y^{ 2 } } (x,y)=12y^{ 2 } $$

матрица Гессе имеет вид

$$ { H }_{ f }(x,y)=\begin{Vmatrix} 12x^{ 2 }-4 & 0 \\ 0 & 12y^{ 2 } \end{Vmatrix} $$

Используя критерий Сильвестра, убедитесь, что в указанных трёх точках квадратичная форма полуопределена. Несмотря на то, что достаточный критерий экстремума в терминах квадратичного приближения неприменим, из записи функции в виде [latex]f(x,y)=(x^{2}-1)^{2}+y^{4}-1[/latex] очевидно, что в точках [latex](\pm 1, 0)[/latex] функция (симметричная и монотонно возрастающая по обеим переменным) имеет строгий локальный минимум, а в точке [latex](0, 0)[/latex] не имеет экстремума вовсе.
Нижеприведенное изображение наглядно демонстрирует правильность выводов. Нормалями к поверхности обозначены стационарные точки.
Example_Top_View

[свернуть]

Замечание 2

Функция может принимать экстремальные значения в граничных точках области определения. Вышеприведенное достаточное условие для их выявления использовать не рекомендуется, следует обратиться к аппарату теории условного экстремума.


Пример (Демидович, №3629)

Исследовать на локальный экстремум функцию

$$ z = x y \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} \quad (a > 0, \quad b > 0) $$

Спойлер

Вычислим первые частные производные. Решением нижеприведенной системы

$$ z^{ ‘ }_{ x }=\frac { y\left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } \right) }{ \sqrt { 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } } }, \quad z^{ ‘ }_{ y }=\frac { y\left( 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { 2y^{ 2 } }{ b^{ 2 } } \right) }{ \sqrt { 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } } } $$

находим стационарные точки

$$(0,0),\quad \left( \frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( -\frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( \frac { a }{ \sqrt { 3 } } ,-\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( -\frac { a }{ \sqrt { 3 } } ,-\frac { b }{ \sqrt { 3 } } \right) $$

Отметим, что в точках, лежащих на границе эллипса [latex]1=\frac{x^2}{a^2}+\frac{y^2}{b^2}[/latex] частные производные не существуют, следовательно, их следует отдельно проверить на экстремум, что выходит за рамки аппарата данной статьи.

Для проверки достаточных условий выпишем вторые производные

$$ z^{ » }_{ x^{ 2 } }=\frac { -\frac { xy }{ a^{ 2 } } \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right)}{ \left(1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right)^{\frac{3}{2}} }, \quad z^{ » }_{ y^{ 2 } }=\frac { -\frac { xy }{ b^{ 2 } } \left( 1-\frac { 3x^{ 2 } }{ a^{ 2 } } -\frac { 2y^{ 2 } }{ b^{ 2 } } \right) }{ \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right) ^{ \frac { 3 }{ 2 } } }, \\ z^{ » }_{ xy }=\frac { 1+\frac { 2x^{ 4 } }{ a^{ 4 } } +\frac { 3x^{ 2 }y^{ 2 } }{ a^{ 2 }b^{ 2 } } +\frac { 2y^{ 4 } }{ b^{ 4 } } -\frac { 3x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } }{ \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right) ^{ \frac { 3 }{ 2 } } } $$
  1. Точка [latex] (0,0) [/latex] не является точкой условного экстремума
    $$ \mathbf{ H }_{ z }(0,0)=\begin{Vmatrix} 0 & 1 \\ 1 & 0 \end{Vmatrix},\quad \Delta_{1}=0,\quad \Delta_{2}=-1 $$
  2. Заметим, что функция [latex]z(x,y)[/latex] чётна, а также [latex]z \left( \frac { -a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) = z \left( \frac { a }{ \sqrt { 3 } } ,\frac { -b }{ \sqrt { 3 } } \right)[/latex].

    Точки [latex] (\pm \frac { a }{ \sqrt { 3 } }, \pm \frac { b }{ \sqrt { 3 } }) [/latex] являются точками условного экстремума

    $$ { H }_{ z }(\frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } )=\begin{Vmatrix} -\frac { 4b }{ \sqrt { 3 } a } & -\frac { 2 }{ \sqrt { 3 } } \\ -\frac { 2 }{ \sqrt { 3 } } & -\frac { 4a }{ \sqrt{3}b} \end{Vmatrix},\quad \Delta _{ 1 }=-\frac { 4b }{ \sqrt { 3 } a } 0 $$ $$ { H }_{ z }(\frac { -a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } )=\left( \begin{array}{cc} \frac { 4b }{ \sqrt { 3 } a } & -\frac { 2 }{ \sqrt { 3 } } \\ -\frac { 2 }{ \sqrt { 3 } } & \frac { 4a }{ \sqrt { 3 } b } \end{array} \right) ,\Delta _{ 1 }=\frac { 4b }{ \sqrt { 3 } a } >0, \quad \Delta _{ 1 }=\frac { 16 }{ 3 } — \frac{4}{3} = 4 > 0 $$

    Соответственно, [latex]\left(\pm \frac {a}{ \sqrt { 3 } } , \pm \frac { b }{ \sqrt { 3 } } \right)[/latex] — точки минимума, [latex]\left(\pm \frac {a}{ \sqrt { 3 } } , \mp \frac { b }{ \sqrt { 3 } } \right)[/latex] — точки максимума.

  3. Пример: [latex]a = b = 2[/latex]
    Elliptic_Surface_a_b_2

[свернуть]

Источники:

Закрепление материала.

Таблица лучших: Достаточные условия экстремума функции многих переменных

максимум из 23 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

М1473. О записи степеней двойки

Задача из журнала «Квант» (1995, выпуск №4)

Пусть [latex]c_{n}[/latex] — первая цифра числа [latex]2^{n}[/latex] (в десятичной записи).

  1. Сколько единиц среди первых 1000 членов этой последовательности?
  2. Докажите, что в последовательности
    $$ c_{1}=2, \quad c_{2}=4, \quad c_{3}=8, \quad c_{4}=1, \quad c_{5}=3, \quad… $$

    встретится ровно 57 различных «слов» [latex]c_{k}c_{k+1}…c_{k+12}[/latex] длины 13.

Решение

  1. Отметим на «логарифмической шкале» [latex]y=\log_{10}{x} [/latex] числа [latex]x=2^{n}[/latex] (каждая следующая отметка получается из предыдущей сдвигом на расстояние   [latex]\log_{10}{2}[/latex]). Число [latex]x[/latex] начинается с [latex]1[/latex], если   [latex]10^{k} \le x < 2 \cdot 10^{k+1}[/latex]   для некоторого [latex]k[/latex]; соответствующие интервалы на рисунке 1 выделены красным (поскольку длина интервала как раз равна   [latex]\log_{10}{2}[/latex], на каждый из них попадает ровно одна отметка). Поскольку

    $$ \log_{10}{2} = 0.30103…, \quad 10^{301} \le 2^{1000} < 10^{302}, $$

    так что   [latex]2^{n}(n=0,1,2,…,1000)[/latex]   ровно 301 раз перейдет через степень [latex]10[/latex] и поэтому (не считая [latex]2^{0}=1[/latex]) 301-ый её член начинается с 1.

  2. line

  3. Чтобы более детально разобраться в закономерностях последовательности [latex]c_{n}[/latex], свернем логарифмическую шкалу [latex]y=\log{10}{x} [/latex] в «логарифмический круг» [latex]z=y-\left[ y \right][/latex]: каждый отрезок от [latex]10^k[/latex] до [latex]10^{k+1}[/latex] даёт новый оборот круга, а точки [latex]0=\log_{10}{1}, \quad \log_{10}{2}, \quad \log_{10}{3}, \quad …, \quad \log_{10}{9}[/latex] — границы интервалов, в которых расположены значения z, соответствующие различным первым значащим цифрам числа [latex]x[/latex] от [latex]1[/latex] до [latex]9[/latex] (см. рисунок 2).

    log_circle

    Прежде чем решать задачу [latex](2)[/latex], объясним идею рассуждения на более простом примере: выясним, сколько разных пар [latex]\left( c_{k}, c_{k+1} \right)[/latex] цифр встречается в нашей последовательности. Читать далее «М1473. О записи степеней двойки»