Processing math: 100%

Лемма о степени произведения двух многочленов

Лемма. Степень произведения двух многочленов равна сумме степеней множителей.

Рассмотрим многочлены u(x)=anxn+an1xn1++a2x2+a1x+a0, v(x)=bmxm+bm1xm1++b2x2+b1x+b0, p(x)=u(x)v(x)=cn+mxn+m+cn+m1xn+m1++c2x2+c1x+c0. По определению произведения многочленов, коэффициенты p(x) равны ci=α+β=iaαbβ,(i=0,1,,n+m1,n+m). Рассмотрим коэффициент многочлена p(x) при xn+m: cn+m=α+β=n+maαbβ=anbm. Очевидно, anbm0, иначе хоть один из множителей был бы равен нулю и степени u(x) и/или v(x) были бы нарушены. Тогда cn+m0 и deg(p(x))=deg(u(x))+deg(v(x))=n+m.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Вычислить deg(p(x))=u(x)v(x), если: u(x)=6x819x7+40x652x5+74x460x3+34x2+5x+50, v(x)=42.
    Решение

    Очевидно, умножение на число не изменит степени многочлена. Однако, убедимся в этом с помощью леммы, считая v(x) многочленом нулевой степени. deg(p(x))=deg(u(x))+deg(v(x))=8+0=8.

  2. Определить степень произведения u(x)v(x), если: u(x)=10x7+26x6+46x5+56x4+114x3+80x2+48x+70, v(x)=39x5+185x4+193x3+81x2+56x+20.
    Решение

    Воспользуемся леммой. Пусть p(x)=u(x)v(x). Тогда: deg(p(x))=deg(u(x))+deg(v(x))=7+5=12.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва:Наука, 1968. — 431с. (c. 132)
  2. Р.Галлагер Теория информации и надежная связь. -М.:»Советское радио», 1974. — 720с. (c. 232-233)
  3. Белозёров Г.С. Конспект лекций.

Лемма о степени произведения двух многочленов

Этот тест призван проверить Ваши знания по теме «Лемма о степени произведения двух многочленов».

Лемма о степени суммы двух многочленов

Лемма. Степень суммы двух многочленов меньше либо равна наибольшей из степеней слагаемых.

Рассмотрим многочлены u(x)=anxn+an1xn1++a2x2+a1x+a0, v(x)=bmxm+bm1xm1++b2x2+b1x+b0, s(x)=u(x)+v(x)=cpxp+cp1xp1++c2x2+c1x+c0, где p=max(m,n). По определению суммы двух многочленов, коэффициенты s(x) равны ci=ai+bi,(i=0,1,,p1,p). Рассмотрим коэффициент многочлена s(x) при xp: cp=an+bm, если они существуют, т.е. если n=m. Если же n>m, то cp=an. Иначе, n<m и cp=bm. Таким образом, степень s(x) не будет больше max(m,n). В случае же m=n и an=bm, cp=0 и степень s(x)<p.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Какой степени будет сумма u(x)+v(x), если: u(x)=10x7+26x6+46x5+56x4+114x3+80x2+48x+70, v(x)=7x7+19x6+39x5+185x4+193x3+81x2+56x+20?
    Решение

    Воспользуемся леммой. Пусть s(x)=u(x)+v(x). Поскольку deg(v(x))=deg(u(x))=7, коэффициент многочлена s(x) при x7 равен c7=10+7=170. Следовательно, deg(s(x))=7.

  2. Определить степень суммы многочленов u(x)+v(x), если: u(x)=45x747x6x5140x4+10x3+13x2+24x+12, v(x)=45x7+47x6+x5+27x4+12x3+6x2+2x+21.
    Решение

    Воспользуемся леммой. Пусть s(x)=u(x)+v(x), коэффициенты u(x), v(x), s(x) равны ai, bi, ci соответственно. Аналогично предыдущему случаю, deg(v(x))=deg(u(x))=7. Рассмотрим коэффициенты s(x): c7=a7+b7=45+(45)=0. Значит, deg(s(x))<7. c6=a6+b6=47+47=0, c5=a5+b5=1+1=0, c4=a4+b4=140+27=1130. Значит, deg(s(x))=4.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва:Наука, 1968. — 431с. (c. 132)
  2. Р.Галлагер Теория информации и надежная связь. -М.:»Советское радио», 1974. — 720с. (c. 232-233)
  3. Белозёров Г.С. Конспект лекций.

Лемма о степени суммы двух многочленов

Этот тест призван проверить Ваши знания по теме «Лемма о степени суммы двух многочленов».

Теорема об аддитивной группе многочленов

Теорема. Пусть P[x]множество многочленов над полем от переменной x, +операция сложения многочленов. Тогда (P[x],+)абелева группа.

Очевидно, P[x], +БАО. Проверим выполнение аксиом абелевой группы:

  1. Ассоциативность операции: u(x),v(x),w(x)P[x]:(u(x)+v(x))+w(x)=u(x)+(v(x)+w(x)). Как известно, операция сложения многочленов обладает ассоциативностью.
  2. Коммутативность операции: u(x),v(x)P[x]:u(x)+v(x)=v(x)+u(x). Сложение многочленов также обладает и коммутативностью.
  3. Покажем что существует нейтральный элемент по сложению, а именно: eP[x]u(x)P[x]:u(x)+e=e+u(x)=u(x). Таким элементом выступает число 0, которое можно рассматривать как одночлен, или как многочлен с коэффициентами равными нулю. Из определения сложения многочленов, сложение с ним не изменит коэффициенты исходного многочлена, т.к. 0 является нейтральным элементом для сложения чисел.
  4. Наконец, покажем существование противоположного элемента: u(x)P[x]u(x)P[x]:u(x)+(u(x))=u(x)+u(x)=e=0. Получить такой элемент для любого многочлена можно просто заменив все его коэффициенты на противоположные (простыми словами — поменяв их знаки). Суммой таких многочленов, в силу противоположности их коэффициентов как чисел, будет многочлен, все коэффициенты которого равны нулю, или просто 0.

Итак, все аксиомы выполняются, следовательно (P[x],+)абелева группа.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Является ли (P3[x],+), где P3[x]множество многочленов третьей степени, абелевой группой?
    Решение

    Очевидно, операция сложения многочленов сохраняет все свои свойства на этом множестве, а нейтральный и противоположный элементы ему принадлежат все аксиомы выполняются. Также, + остается БАО, а P3[x]. Значит, ответ положительный.

  2. Является ли (P3[x],), где P3[x]множество многочленов третьей степени, а операция умножения многочленов, абелевой группой?
    Решение

    Аналогично первому примеру, P3[x]. Однако, в случае умножения, произведением двух многочленов 3-й степени будет многочлен 6-й степени (по лемме о степени произведения), что выходит за границы рассматриваемого множества. Значит, (P3[x],) — не абелева группа.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 132-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Аддитивная группа многочленов

Этот тест призван проверить Ваши знания по теме «Аддитивная группа многочленов».

Операции над многочленами

Сложение многочленов

Определение. Пусть даны многочлены u(x)=anxn+an1xn1++a2x2+a1x+a0, v(x)=bmxm+bm1xm1++b2x2+b1x+b0. Будем считать, что nm. Тогда их суммой является многочлен s(x)=u(x)+v(x)=cnxn+cn1xn1++c2x2+c1x+c0, каждый коэффициент ci которого получается сложением соответствующих коэффициентов ai и bi, (i=0,1,,n1,n). Причём, если ni>m, то считаем, что bi=0.

Замечание. Можно определить и вычитание многочленов, как сложение с противоположным. «Нулём» будет выступать нулевой многочлен (0), а противоположный данному многочлен получается заменой всех коэффициентов на противоположные: u(x)=anxn+an1xn1++a2x2+a1x+a0, u(x)=anxnan1xn1a2x2a1xa0.

Основные свойства сложения

1. Степень суммы. Степень суммы двух многочленов меньше либо равна наибольшей из степеней слагаемых. (Лемма)

2. Коммутативность: u(x)+v(x)=v(x)+u(x).

Пусть u(x)+v(x)=s1(x),v(x)+u(x)=s2(x). Рассмотрим коэффициенты s1(x) и s2(x). Они равны в силу коммутативности сложения чисел (ai+bi=bi+ai), а значит, s1(x)=s2(x), что доказывает коммутативность сложения многочленов.

3. Ассоциативность: (u(x)+v(x))+w(x)=u(x)+(v(x)+w(x)).

Пусть коэффициенты u(x), v(x) и w(x) равны ai, bi, и ci соответственно. Зададим их суммы: (u(x)+v(x))+w(x)=f(x), u(x)+(v(x)+w(x))=g(x). Для доказательства ассоциативности, докажем равенство f(x) и g(x). Рассмотрим общие формулы их коэффициентов: fi=(ai+bi)+ci, gi=ai+(bi+ci). Аналогично коммутативности, равенство этих двух многочленов следует из ассоциативности операции сложения для чисел, из чего и следует ассоциативность сложения многочленов.

Умножение многочленов

Определение. Пусть даны многочлены u(x)=anxn+an1xn1++a2x2+a1x+a0, v(x)=bmxm+bm1xm1++b2x2+b1x+b0. Тогда их произведением является многочлен p(x)=u(x)v(x)=cn+mxn+m+cn+m1xn+m1++c2x2+c1x+c0, образующийся в результате простого умножения u(x)v(x) и приведения подобных членов. Таким образом, каждый коэффициент произведения ci=α+β=iaαbβ,(i=0,1,,n+m1,n+m).

Замечание. Для многочленов операция обратная умножению (деление) не определена. Однако, существует алгоритм деления с остатком.

Основные свойства умножения

1. Степень произведения. Степень произведения двух многочленов равна сумме степеней множителей. (Лемма)

2. Коммутативность: u(x)v(x)=v(x)u(x).

Рассмотрим многочлены u(x) и v(x) из определения произведения. Пусть f(x)=u(x)v(x)=cn+mxn+m+cn+m1xn+m1++c2x2+c1x+c0, g(x)=v(x)u(x)=dn+mxn+m+dn+m1xn+m1++d2x2+d1x+d0. Тогда, коэффициенты многочлена f(x) равны ci=α+β=iaαbβ, а многочлена g(x)di=α+β=ibβaα. Из очевидного равенства этих сумм вытекает равенство f(x) и g(x), а значит, u(x)v(x)=v(x)u(x) и коммутативность доказана.

3. Ассоциативность: (u(x)v(x))w(x)=u(x)(v(x)w(x)).

Пусть коэффициенты u(x), v(x) и w(x) равны ai, bi, и ci соответственно, а именно: u(x)=anxn+an1xn1++a2x2+a1x+a0, v(x)=bmxm+bm1xm1++b2x2+b1x+b0, w(x)=csxs+cs1xs1++c2x2+c1x+c0. Теперь, зададим их произведения в нужном порядке: f(x)=u(x)v(x)=dn+mxn+m+dn+m1xn+m1++d2x2+d1x+d0, g(x)=v(x)w(x)=rm+sxm+s+rm+s1xm+s1++r2x2+r1x+r0, h(x)=(u(x)v(x))w(x)=kn+m+sxn+m+s++k2x2+k1x+k0, l(x)=u(x)(v(x)w(x))=pn+m+sxn+m+s++p2x2+p1x+p0. Для доказательства ассоциативности, докажем равенство многочленов h(x) и l(x). Рассмотрим общую формулу коэффициента h(x): ki=q+γ=idqcγ=q+γ=i(α+β=q(aαbβ)cγ)=α+β+γ=iaαbβcγ. Теперь покажем, что общую формулу коэффициента l(x) можно привести к такому же виду: pi=α+q=iaαrq=α+q=i(aαβ+γ=qbβcγ)=α+β+γ=iaαbβcγ. Из равенства коэффициентов следует равенство многочленов, что и доказывает ассоциативность.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Сложить многочлены 3x4+2x34x28x+10 и 8x34x29x10.

    Решение

    Воспользуемся определением суммы многочленов: (3x4+2x34x28x+10)+(8x34x29x10)= =(3+0)x4+(2+8)x3+(4+(4))x2+(8+(9))x+(1010)= =3x4+10x38x217x.

  2. Найти разность 7x7+10x620x5+10x413x3+8x2+11x+19 и 5x710x5+7x4+x3+11x2+20x+11.

    Решение

    Сложим первый многочлен с противоположным второму: 7x7+10x620x5+10x413x3+8x2+11x+19+ +(5x7+10x57x4x311x220x11)= =(75)x7+(10+0)x6+(20+10)x5+(107)x4+ +(131)x3+(811)x2+(1120)x+(1911)= =2x7+10x610x5+3x414x33x29x+8.

  3. Найти произведение 2x2+5x1 и 4x2x+3.

    Решение

    Умножим два многочлена и приведём подобные: (2x2+5x1)(4x2x+3)= =8x42x3+6x2+20x35x2+15x4x2+x3= =8x4+(202)x3+(654)x2+(15+1)x3= =8x4+18x33x2+16x3.

  4. Найти произведение 3x2+7x+9 и 6x2+2x+8.

    Решение

    На этот раз, воспользуемся общей формулой коэффициента из определения произведения многочленов. Тогда: u(x)=3x2+7x+9,a2=3,a1=7,a0=9, v(x)=6x2+2x+8,b2=6,b1=2,b0=8, p(x)=u(x)v(x)=c4x4+c3x3+c2x2+c1x+c0. По определению, ci=α+β=iaαbβ, (i=0,1,2,3,4). Вычислим их. c0=α+β=0aαbβ=a0b0=98=72, c1=α+β=1aαbβ=a0b1+a1b0=92+78=74, c2=α+β=2aαbβ=a0b2+a1b1+a2b0=96+72+(3)8=44, c3=α+β=3aαbβ=a1b2+a2b1=76+(3)2=36, c4=α+β=4aαbβ=a2b2=36=18. Имеем: p(x)=u(x)v(x)=18x4+36x3+44x2+74x+72.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 130-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Операции над многочленами

Этот тест призван проверить Ваши знания по теме «Операции над многочленами».

Ф703. О времени полёта ракеты

Задача из журнала «Квант» (1982 год, 3 выпуск)

Условие

Ракета запущена с поверхности Земли вертикально вверх с первой космической скоростью и возвращается на Землю недалеко от места старта. Сколько времени она находилась в полёте? Радиус Земли R=6400 км.

Примечание. Площадь эллипса с полуосями a и b равна S=πab.

Решение

Траектория ракеты представляет собой часть очень вытянутого эллипса, в одном из фокусов которого находится центр Земли (см. рисунок). Скорость ракеты в верхней точке D траектории почти равна нулю.

Траектория ракеты

Согласно закону сохранения энергии: mv202GMmRGMm2b.Здесь M — масса Земли, m — масса ракеты, v0=GMR — начальная скорость ракеты (первая космическая скорость); GMmR и GMm2b — потенциальная энергия ракеты у поверхности Земли (при запуске) и в верхней точке траектории. Из () найдем большую полуось эллипса: br.

Из третьего закона Кеплера (квадраты периодов обращения по эллиптическим траекториям относятся как кубы больших полуосей эллипсов) следует, что полное время Tэ движения ракеты по всему эллипсу было бы равно периоду T0 обращения спутника, движущегося по круговой орбите вблизи поверхности Земли, то есть Tэ=T0=2πRGMR=2πRg.Из второго закона Кеплера (радиус-вектор, соединяющий тело, движущееся под действием силы тяготения по замкнутой орбите, с центром притяжения, за равные промежутки времени заметает равные площади) следует, что отношение времени движения T по половине эллипса (участок BDC) к полному периоду Tэ равно отношению площади заштрихованной на рисунке фигуры OBDC к полной площади эллипса:TTэ=12πab+abπab. Отсюда находим время полёта T: T=Tэ(12+1π)=(π+2)Rg1ч.9мин.

Е. Сурков