M1705. Шахматная сфера

Задача из журнала «Квант» (1999 год, 5 выпуск)

Условие

Через точку внутри сферы проведены три попарно перпендикулярные плоскости, которые рассекли сферу на 8 криволинейных треугольников. Эти треугольники закрашены в шахматном порядке в черный и белый цвета (рис.1). Докажите, что площадь черной части сферы равна площади ее белой части.

Решение

Докажем равносоставленность черной и белой частей сферы, тем самым будет доказана их равновеликовость. Обозначим через $\alpha$, $\beta$ и $\gamma$ плоскости, рассекающие сферу, а через $\overline{\alpha}$, $\overline{\beta}$ и $\overline{\gamma}$ — плоскости, соответственно симметричные им относительно центра сферы. Эти шесть плоскостей рассекают сферу на попарно равные куски так, что один из них белый, а другой черный в каждой паре. Однако этот факт легко услышать, но труднее увидеть.

Чтобы увидеть было легче, будем следовать принципу постепенности. Между плоскостями $\alpha$ и $\overline{\alpha}$, которые будем считать горизонтальными, расположен сферический пояс, выше и ниже которого располагаются две сферические «шапки». Заметим, что плоскости $\beta$, $\overline{\beta}$, $\gamma$ и $\overline{\gamma}$ разрезают эти шапки на части так, что каждая белая часть одной шапки симметрична черной части другой шапки относительно горизонтальной плоскости $\pi$, проходящей через центр сферы.

Осталось разобраться со сферическим поясом. Для этого воспроизведем на рисунке сечение сферы плоскостью $\pi$, на котором показаны следы секущих плоскостей и следы черных и белых кусков сферического пояса (рис.2).

Одинаковым номерам соответствуют следы тех кусков, которые симметричны и имеют разные цвета.

Напоследок заметим, что объектом утверждения задачи может выступать не только сфера, но любая поверхность выпуклого тела, имеющего три попарно перпендикулярные плоскости симметрии (например, эллипсоид или правильный октаэдр; случай с октаэдром особенно интересен, поскольку у него существуют различные попарно перпендикулярные тройки плоскостей симметрии). Но в указанном смысле также любопытен и случай с обыкновенным кубом (рис.3).

В. Произволов

M1763. Окружность вписанная в треугольник

Задача из журнала «Квант» (2001 год, 1 выпуск)

Условие

Пусть $AH_{1}$, $BH_{2}$, $CH_{3}$ — высоты остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$, $AB$ в точках $T_{1}$, $T_{3}$,$T_{3}$ соответственно. Прямые $l_{1}$, $l_{2}$, $l_{3}$ являются образами прямых $H_{2}H_{3}$, $H_{3}H_{1}$, $H_{1}H_{2}$ при симметрии относительно прямых $T_{2}T_{3}$, $T_{3}T_{1}$, $T_{1}T_{2}$ соответственно.

Докажите, что прямые $l_{1}$, $l_{2}$, $l_{3}$ образуют треугольник с вершинами на окружности, вписанной в треугольник $ABC$.

Решение

  1. Будем обозначать через $\measuredangle \left (l, m\right )$ направленный угол между прямыми $l$ и $m.$
    Пусть $\measuredangle \left (AC,AB\right ) = \alpha$, $\measuredangle \left (AB,BC\right ) = \beta$, $\measuredangle \left (BC,CA\right ) = \gamma$, тогда (см.рисунок)
    $\measuredangle \left (H_{1}H_{2},AC\right ) = -\beta,$ так как $\Delta H_{1}CH_{2} \sim \Delta ABC $, $\measuredangle \left (T_{1}T_{2}, AC\right ) = \frac{\displaystyle -\alpha -\beta }{\displaystyle 2},$ так как $ CT_{1} = CT_{2},$ значит, $\measuredangle \left (H_{1}H_{2}, T_{1}T_{2}\right ) = \frac{\displaystyle \alpha — \beta }{\displaystyle 2}$.
  2. Рассмотрим гомотетию с отрицательным коэффициентом, переводящую описанную окружность треугольника $ABC$ во вписанную. Пусть $K_{1}K_{2}K_{3}$ — образ $ ABC$ при этой гомотетии, тогда стороны треугольника $K_{1}K_{2}K_{3}$ параллельны сторонам треугольника $ABC,$ значит, $$\measuredangle \left (K_{1}K_{2}, T_{1}T_{2}\right ) = \measuredangle \left (AB, T_{1}T_{2}\right )= \measuredangle \left (AB, AC\right ) + \measuredangle \left (AC, T_{1}T_{2}\right )= $$
    $$ = -\alpha +\frac{\displaystyle \alpha +\beta }{\displaystyle 2} = \frac{\displaystyle \beta -\alpha }{\displaystyle 2}= -\measuredangle \left (H_{1}H_{2}, T_{1}T_{2}\right ).$$Проведем $AL_{1}$, $BL_{2}$, $CL_{3}$- биссектрисы треугольника $ABC$, тогда $CL_{3} \perp T_{1}T_{2}$ и $\measuredangle \left (K_{1}K_{2},CL_{3}\right ) = -\measuredangle \left (H_{1}H_{2},CL_{3}\right )$.
    Пусть $ CL_{3}= l_{C}, P, Q, S $ — точки пересечения $CL_{3}$ с $ K_{1}K_{2}$, $ T_{1}T_{2}$ и $ H_{1}H_{2}$ соответственно, $ I $ — центр вписанной окружности треугольника $ABC$, $r$ — ее радиус. Вычислим длины отрезков $ CP,$ $CQ $ и $CS.$
  3. $ \Delta H_{1}CH_{2} \sim \Delta ABC \Rightarrow CS = l_{C} \cdot \frac{\displaystyle CH_{1}}{\displaystyle CA} = l_{C} \cos \gamma$, но $$IL_{3}= \frac{\displaystyle r}{\displaystyle \cos\frac{\displaystyle \beta — \alpha }{\displaystyle 2}}, т.к. \angle L_{3}IT_{3}= \frac{\displaystyle \left | \beta -\alpha \right |}{\displaystyle 2},$$ значит, $$ l_{C}= r\left ( \frac{\displaystyle 1}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} + \frac{\displaystyle 1}{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} \right ),$$ тогда $$ CS=\left ( \frac{\displaystyle \cos \gamma}{\sin \frac{\displaystyle \gamma }{\displaystyle 2}} + \frac{\displaystyle \cos \gamma}{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} \right ).$$
  4. $ \angle T_{1}CI= \frac{\displaystyle \gamma }{\displaystyle 2}$, следовательно, $\angle T_{1}IQ=\frac{\displaystyle \pi}{\displaystyle 2}- \frac{\displaystyle \gamma }{\displaystyle 2},$ значит, $$T_{1}Q=r\sin \left ( \frac{\displaystyle \pi }{\displaystyle 2}- \frac{\displaystyle \gamma }{\displaystyle 2}\right ) = r\cos \frac{\displaystyle \gamma }{\displaystyle 2},$$ откуда $$ CQ= T_{1}Q \text{ctg}\:\frac{\displaystyle \gamma }{\displaystyle 2} = r\frac{\displaystyle \cos^{2}\frac{\displaystyle \gamma }{\displaystyle 2}}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}}$$
  5. Пусть $IX \perp K_{1}K_{2}, X\in K_{1}K_{2}$. Тогда $$\angle K_{1}IK_{2} = 2\angle K_{1}K_{3}K_{2} = 2 \gamma \Rightarrow \angle K_{1}IX = \gamma,$$ стало быть, $$IX=r \cos \gamma.$$ Но $$ \angle XIP = \angle L_{3}IT_{3} = \frac{\displaystyle \left | \beta -\alpha \right |}{\displaystyle 2},$$ поэтому $$IP=\frac{\displaystyle r\cos \gamma }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}},$$ и из равенства $$CI=\frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma}{\displaystyle 2}}$$ следует, что $$CP= \frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} — \frac{\displaystyle r\cos \gamma }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}}.$$
  6. Докажем, что $ CP + CS = 2CQ$, т.е. что $ Q$ — середина отрезка $SP$.Имеем: $$CP + CS = \frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} — \frac{\displaystyle r\cos \gamma }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} + \frac{\displaystyle r\cos \gamma }{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} + \frac{\displaystyle r\cos \alpha }{\displaystyle \cos \frac{\displaystyle \beta -\alpha }{\displaystyle 2}} = $$ $$=\frac{\displaystyle r}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}}\left ( 1+ \cos \gamma \right ) = \frac{\displaystyle 2r\cos \alpha^{2}\frac{\displaystyle \gamma }{\displaystyle 2}}{\displaystyle \sin \frac{\displaystyle \gamma }{\displaystyle 2}} = 2CQ.$$
    Значит, $T_{1}T_{2}$- серединный перпендикуляр к отрезку $SP$. Продлим $K_{1}K_{2}$ и $H_{1}H_{2}$ до пересечения в точке $Y$. Мы доказали, что $\measuredangle \left ( H_{1}H_{2}, SP \right ) = \measuredangle \left ( SP,K_{1}K_{2} \right ),$ значит, треугольник $SYP$- равнобедренный, поэтому прямые $H_{1}H_{2}$ и $K_{1}K_{2}$ симметричны относительно $YQ$, т.е. относительно $T_{1}T_{2}$.Это означает, что $K_{1}K_{2}$ совпадает с прямой $l_{3}$. Аналогично, $l_{1}$ и $l_{2}$ — это прямые $K_{2}K_{3}$ и $K_{1}K_{3}$, следовательно, треугольник, составленный из прямых $l_{1},l_{2},l_{3}$ — это $K_{1}K_{2}K_{3}$. Его вершины лежат на вписанной в треугольник $ABC$ окружности, что и требовалось доказать.

Т.Емельянова, А.Гайфуллин, Д.Терешин

M1677. Диагонали параллелограмма

Задача из журнала «Квант» (выпуск №5, 1999)

Условие

Диагонали параллелограмма $ABCD$ пересекаются в точке $O$. Окружность, проходящая через точки $A$, $O$ и $B$, касается прямой $BC$. Докажите, что окружность, проходящая через точки $B$, $O$ и $C$, касается прямой $CD$.

Решение

Углы $OAB$ и $OBC$ равны, так как первый вписан в окружность $AOB$, а второй образован касательной $BC$ и хордой $BO$ этой окружности (см. рисунок). Следовательно, углы $OBC$ и $OCD$ также равны, что эквивалентно утверждению задачи. Отметим, что параллелограмм, вершинами которого являются середины сторон данного, подобен исходному, поэтому задача допускает другую формулировку: в параллелограмме $ABCD$ углы $CAB$ и $DBC$ равны, $AD=1$, найти $AC$.

А.Заславский

М1633. Биссектрисы

Задача из журнала «Квант» (1998 год, 2 выпуск)


Условие задачи

В треугольнике $ABC$ отрезки $CM$ и $BN$ – медианы, $P$ и $Q$  – точки соответственно на $AB$ и $AC$ такие, что биссектриса угла $C$ треугольника одновременно является биссектрисой угла $MCP$, а биссектриса угла $B$ – биссектрисой угла $NBQ$. Можно ли утверждать, что треугольник $ABC$ равнобедренный, если
а) $BP = CQ$;
б) $AP = AQ$;
в) $PQ || BC$;
Отрезки $BQ$ и $CP$ называются симедианами.

Решение

Теорема

$AB = c$, $AC = b$, $AS$ – симедиана. Тогда $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

Пусть $AM$ – медиана; обозначим $\alpha = \angle BAS = \angle CAM$, $\angle MAS = \beta$ (рис.1).
Имеем: $\displaystyle \frac{BS}{SC}=\frac{S_{ABS}}{S_{ASC}} = \frac{c\sin\alpha }{b(\sin\alpha +\beta)}$, $\displaystyle 1 = \frac{S_{ABM}}{S_{AMC}} = \frac{c\sin(\alpha + \beta)}{b\sin \alpha}$.
Значит, $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

а) Да. Перепишем равенство $BP = CQ$, пользуясь теоремой:$$b^{3} + ba^{2} = c^{3} + ca^{2}.$$
Поскольку $f(x)= x^{3}+xa^{2}$ – монотонная функция, получаем, что $b=c$.
К этому равенству можно прийти и так: $b^{3}-c^{3} = a^{2}(c-b);$ значит, при $b\neq c$ будет $b^{2} + bc + c^{2} = -a^{2};$ но $b^{2} + bc + c^{2} \geqslant 0.$
в) Да. $\displaystyle \frac{AQ}{QC}=\frac{AP}{PB}$, т.е. $\displaystyle \frac{c^{2}}{a^{2}}=\frac{b^{2}}{a^{2}}.$

б) Нет. $\displaystyle AP = c \cdot \frac{b^{2}}{b^{2} + a^{2}}$, $\displaystyle AQ = b \cdot \frac{c^{2}}{c^{2} + a^{2}}$.
Перепишем $AP = AQ: bc(b — c) = a^{2}(b — c)$. Значит, в неравнобедренном треугольнике таком, что $a^{2} = bc$, имеем $AP = AQ$.

  1. Если A – наибольший или наименьший угол треугольника, $AP = AQ$, то треугольник равнобедренный.
  2. Неравнобедренный треугольник такой, что $AP = AQ$ – это треугольник со сторонами вида $d, dq, dq^{2}$, где $q \neq 1$.
  3. Пункт б) (именно он предлагался на Турнире городов) можно решить и без помощи теоремы, пользуясь лишь соображениями непрерывности. Это можно сделать по такой, например, схеме.
    Пусть для треугольника $ABC$ будет $AP > AQ$, а для треугольника $ {A}'{B}'{C}’$ ${AP}’ < {AQ}’$. «Перетянем» $A$ в ${A}’$, $B$ в ${B}’$, $C$ в ${C}’$; по дороге нам встретится треугольник $A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$ такой, что $A^{\prime\prime}P^{\prime\prime} = A^{\prime\prime}Q^{\prime\prime}$. Если возникающие при этом «перетягивании» треугольники не являются равнобедренными, то задача решена.

Приведем пример реализации этой схемы.
Рассмотрим треугольник рисунка 2:

$$\displaystyle AB = 1, \angle A = \frac{\pi}{3}, \angle B = \frac{\pi}{2};$$ $CD$– биссектриса.
Так как $\displaystyle \frac{AD}{BD} = \frac{AC}{BC}$, то $\displaystyle AD > \frac{1}{2}$: следовательно, $\displaystyle AP > \frac{1}{2}.$
Далее, $\displaystyle \angle ABQ = \angle NBC = \frac{\pi}{6}$; значит, $\displaystyle AQ = \frac{1}{2}$.

Рассмотрим теперь треугольник рисунка 3:
$$\angle A = \frac{\pi}{4}, \angle B = \frac{\pi}{2}, BC = 1.$$ Имеем: $\displaystyle AQ = \frac{\sqrt{2}}{2}$; обозначим через G точку пересечения медиан, из подобных треугольников $CQG$ и $CBP$ получаем $\displaystyle \frac{BP}{BC} = \frac{GQ}{QC} = \frac{GQ}{BQ} = \frac{1}{3}$. Окончательно: $\displaystyle AP = 1 – BP = \frac{2}{3} < \frac{\sqrt{2}}{2} = AQ$.

В. Сендеров

М1759. Остроугольный прямоугольник

Задача из журнала «Квант» (2001 год, 4 выпуск)

Условие

Имеется остроугольный треугольник с меньшей стороной $c$ и противолежащим ей углом $\gamma$ . Известно, что треугольник можно раскрасить в два цвета так, что расстояние между любыми двумя точками одного цвета будет не больше $с$. Докажите, что $\gamma \geqslant 36^\circ$.

Решение

Рисунок к задачеРассмотрим треугольник $ABC$ с длинами сторон $AB=c$, $BC=a$, $CA=b$, причём $a \geqslant b \geqslant c$; углы при вершинах $A$, $B$ и $C$ обозначим соответственно через $\alpha$, $\beta$ и $\gamma$.

Пусть точка $K$ — середина стороны $BC$, точка $A_1$ — пересечение серединного перпендикуляра к $BC$ и стороны $AC$ (см. рисунок).

Из условия задачи следует, что в указанной раскраске вершины $B$ и $C$ должны быть разного цвета, поскольку расстояние между ними больше $c$ (если оно равно $c$, то треугольник равносторонний, и для него утверждение задачи выполняется). Значит, точка $A_1$ должна иметь одинаковый цвет с одной из точек $B$ или $C$.

В любом случае должно выполняться неравенство $AB \geqslant A_1C$, которое равносильно следующим неравенствам:
$$c \geqslant \frac{a}{2\cos\gamma}\;;\;\frac{\sin\gamma}{\sin\alpha}\geqslant\frac{1}{2\cos\gamma};$$
$$\sin2\gamma \geqslant \sin\alpha\;;\;\alpha \leqslant 2\gamma \leqslant \pi-\alpha$$
Учитывая, что $2\gamma \leqslant \beta+\gamma=\pi-\alpha$, имеем: $AB \geqslant A_1C \Leftrightarrow \alpha \leqslant 2\gamma .$

Завершаем доказательство:
$$180^\circ = \alpha+\beta+\gamma \leqslant 2\gamma+2\gamma+\gamma=5\gamma \Rightarrow \gamma \geqslant 36^\circ .$$

А.Эвнин