М696. О размещение чисел в таблице

Задача из журнала «Квант»(1981 выпуск №8)

Условие

Можно ли таблицу $10 \times 10$ клеток заполнить $100$ различными натуральными числами так, чтобы для любого квадрата $k \times k$ клеток $(2 \leq k \leq 10)$

a) Суммы $k$ чисел на его диагоналях были одинаковы?

б) Произведения $k$ чисел на его диагоналях были одинаковы?

Решение

Построение таблицы, при которых сумма его диагоналей были бы одинаковыми.

Назовем таблицу подходящей, если для любого квадрата $k \times k$ клеток $(2 \leq k \leq 10)$ суммы $k$ чисел на его диагоналях одинаковы. Примером подходящей таблицы является таблица ниже(убедитесь в этом). Заметим теперь, что если ко всем числам какой-либо строки подходящей таблицы прибавить одно и тоже число, то тогда таблица всё ещё останется подходящей.

$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$

В самом деле, если $k \times k$ не пересекается с измененной строкой, то суммы чисел на его диагоналях не меняются. В противном случает обе диагонали этого квадрата пересекаются с измененной строкой ровно по одной клетке, и суммы чисел, стоящих на его диагоналях, остаются равными.

Теперь легко построить таблицу, удовлетворяющую условию задачи. Для этого достаточно к строкам первой таблицы добавить некоторые числа так, чтобы в результате все числа таблицы оказались различными. Например, первую строку оставляем неизменной, ко второй добавляем $10$, к третьей $20$, и так далее. Полученная таблица удовлетворяет условию.

$1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$11$ $12$ $13$ $14$ $15$ $16$ $17$ $18$ $19$ $20$
$21$ $22$ $23$ $24$ $25$ $26$ $27$ $28$ $29$ $30$
$31$ $32$ $33$ $34$ $35$ $36$ $37$ $38$ $39$ $40$
$41$ $42$ $43$ $44$ $45$ $46$ $47$ $48$ $49$ $50$
$51$ $52$ $53$ $54$ $55$ $56$ $57$ $58$ $59$ $60$
$61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$ $69$ $70$
$71$ $72$ $73$ $74$ $75$ $76$ $77$ $78$ $79$ $80$
$81$ $82$ $83$ $84$ $85$ $86$ $87$ $88$ $89$ $90$
$91$ $92$ $93$ $94$ $95$ $96$ $97$ $98$ $99$ $100$

Видно, что построить таблицу, в которой сумма его диагоналей были бы равны, возможно.

Построение таблицы, при которых произведение его диагоналей были бы одинаковыми.

Для решение второго условия, необходимо всего лишь каждый элемент таблицы изменить на $a^k$, где $a$ — любое целое число. Пример, где $a=2$, показан в таблице ниже.

$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$

Проводим такую же операцию, добавляем числа так, чтобы все числа таблицы оказались различными, только к степени. То есть, прибавляем к степени второй строки $10$, к третьей $20$, и так далее. И получаем нужную нам таблицу.

$2^1$ $2^2$ $2^3$ $2^4$ $2^5$ $2^6$ $2^7$ $2^8$ $2^9$ $2^{10}$
$2^{11}$ $2^{12}$ $2^{13}$ $2^{14}$ $2^{15}$ $2^{16}$ $2^{17}$ $2^{18}$ $2^{19}$ $2^{20}$
$2^{21}$ $2^{22}$ $2^{23}$ $2^{24}$ $2^{25}$ $2^{26}$ $2^{27}$ $2^{28}$ $2^{29}$ $2^{30}$
$2^{31}$ $2^{32}$ $2^{33}$ $2^{34}$ $2^{35}$ $2^{36}$ $2^{37}$ $2^{38}$ $2^{39}$ $2^{40}$
$2^{41}$ $2^{42}$ $2^{43}$ $2^{44}$ $2^{45}$ $2^{46}$ $2^{47}$ $2^{48}$ $2^{49}$ $2^{50}$
$2^{51}$ $2^{52}$ $2^{53}$ $2^{54}$ $2^{55}$ $2^{56}$ $2^{57}$ $2^{58}$ $2^{59}$ $2^{60}$
$2^{61}$ $2^{62}$ $2^{63}$ $2^{64}$ $2^{65}$ $2^{66}$ $2^{67}$ $2^{68}$ $2^{69}$ $2^{70}$
$2^{71}$ $2^{72}$ $2^{73}$ $2^{74}$ $2^{75}$ $2^{76}$ $2^{77}$ $2^{78}$ $2^{79}$ $2^{80}$
$2^{81}$ $2^{82}$ $2^{83}$ $2^{84}$ $2^{85}$ $2^{86}$ $2^{87}$ $2^{88}$ $2^{89}$ $2^{90}$
$2^{91}$ $2^{92}$ $2^{93}$ $2^{94}$ $2^{95}$ $2^{96}$ $2^{97}$ $2^{98}$ $2^{99}$ $2^{100}$

Так что, построить таблицу, где произведения его чисел одинаковы, тоже можно.

А. Балинский

М639. Косинус угла между прямыми в тетраэдре

Задача из журнала «Квант» (1980 год, 8 выпуск)

Условие

В тетраэдре $ABCD$ $(AC) \bot (BC)$ и $(AD) \bot (BD)$. Докажите, что косинус угла между прямыми $AC$ и $BD$ меньше, чем $|CD| / |AB|$.

Решение

Проведем $(BE) \parallel (CA)$ и $(AE) \parallel (CB)$ (см. рисунок). Косинус угла между прямыми $AC$ и $BD$ — это $|\cos \widehat {DBE}|$.

С другой стороны, четырехугольник $ACBE$ — это прямоугольник, поэтому $|AB| = |CE|$ и $|CD| / |AB| = |CD| / |CE|$.

Заметим, что вершины прямых углов $ACB$, $ADB$, $AEB$ лежит на сфере с диаметром $AB$. Отрезок $CE$ тоже является диаметром этой сферы, поэтому угол $CDE$ — прямой и $|CD| / |CE| = \cos \widehat {DCE}$. Нужное неравенство принимает теперь вид $|\cos \widehat {DBE}| \lt \cos \widehat {DCE}$.

Пусть $R$ — это радиус сферы и $r$ — радиус окружности, получающийся в сечении сферы плоскостью $BDE$. Так как эта плоскость не проходит через центр сферы, $r \lt R$ и из равенств $2r \cdot \sin \widehat {DBE} = |DE| = 2R \cdot \sin \widehat {DCE}$ получаем $\sin \widehat {DBE} \gt \sin \widehat {DCE}$. Значит, $|\cos \widehat {DBE}| \lt |\cos \widehat {DCE}| = \cos \widehat {DCE}$.

Ю. Нестеренко

М664. О равенстве площадей

Задача из журнала «Квант» (1981 год, 1-й выпуск)

Условие

Дан четырехугольник $ABCD$ площади $S$. Обозначим точки пересечения высот треугольников $ABC$, $BCD$, $CDA$, $DAB$ через $H,$ $K,$ $L,$ $M$ соответственно. Докажите, что площадь четырехугольника $HKLM$ тоже равна $S$.

Решение

Самое простое аналитическое решение этой задачи получается с помощью операции псевдоскалярного произведения векторов: $\vec{a}\wedge\vec{b}=\mid\vec{a}\mid\mid\vec{b}\mid\sin\phi$, где $\phi$ — угол, на который нужно повернуть вектор $\vec{a}$ против часовой стрелки, чтобы его направление совпало с направлением вектора $\vec{b}$. Геометрический смысл числа $\vec{a}\wedge\vec{b}$ — ориентированная, площадь параллелограмма, построенного на векторах $\vec{a}$ и $\vec{b}$ (рис. 1). Нужные нам свойства:

Рис. 1.а. $\vec{a}\wedge\vec{b} =2S_{\triangle AOB}$, если $\triangle AOB$ ориентирован положительно— против часовой стрелки.
Рис.1.б. $\vec{a}\wedge\vec{b} =-2S_{\triangle AOB}$, если $\triangle AOB$ ориентирован отрицательно
  1. $(\vec{a}+\vec{b})\wedge\vec{c}=\vec{a}\wedge\vec{c}+\vec{b}\wedge\vec{c}$
  2. $\vec{a}\wedge\vec{b}=-\vec{b}\wedge\vec{a}$
  3. $\vec{a}\wedge\vec{b}=0$, если векторы $\vec{a}$ и $\vec{b}$ коллинеарны. Следуют из того, что $\vec{a}\wedge\vec{b}$ равно скалярному произведению вскторов $\vec{b}$ и $R^{90^{\circ}}(\vec{a})$.

Удобно ввести «симметричные» обозначения: пусть $A_{1}A_{2}A_{3}A_{4}$ — данный четырехугольник, $H_{1}, H_{2}, H_{3} и H_{4}$ — точки пересечений высот треугольников $A_{2}A_{3}A_{4}, A_{3}A_{4}A_{1}$, $A_{4}A_{1}A_{2}$ и $A_{1}A_{2}A_{3}$, соответственно, а $\vec{a_{i}}$ и $\vec{h_{i}}$ — векторы, идущие из фиксированной точки $O$ в $A_{i}$ и $H_{i}$ $(i= 1, 2, 3, 4)$.

Докажем, что треугольники $A_{1}A_{2}A_{3}$ и $H_{1}H_{2}H_{3}$ равновелики (имеют одинаковую площадь) и одинаково ориентированы. Поскольку удвоенная площадь $\triangle$$A_{1}A_{2}A_{3}$ (с учётом ориентации) равна $\overrightarrow{A_{1}A_{2}}\wedge\overrightarrow{A_{1}A_{3}}=(\vec{a_{2}}-\vec{a_{1}})\wedge(\vec{a_{3}}-\vec{a_{1}})=\vec{a_{1}}\wedge\vec{a_{2}}+\vec{a_{2}}\wedge\vec{a_{3}}+\vec{a_{3}}\wedge\vec{a_{1}},$ мы должны доказать равенство \begin{equation} \label{eq:first} \vec{a_{1}}\wedge\vec{a_{2}}+\vec{a_{2}}\wedge\vec{a_{3}}+\vec{a_{3}}\wedge\vec{a_{1}}=\vec{h_{1}}\wedge\vec{h_{2}}+\vec{h_{2}}\wedge\vec{h_{3}}+\vec{h_{3}}\wedge\vec{h_{1}}.\end{equation} Для этого мы используем лишь тот факт, что $\left[A_{i}H_{j}\right]\parallel\left[A_{j}H_{i}\right]$ при всех $i \neq j$. Скажем, $\left[A_{1}H_{2}\right]\parallel\left[A_{2}H_{1}\right]$, поскольку они перпендикулярны $ \left[A_{3}A_{4}\right] $; поэтому $(\vec{a_{1}}-\vec{h_{2}})\wedge(\vec{a_{2}}-\vec{h_{1}})=0$ Сложив три равенства:$$\vec{a_{1}}\wedge\vec{a_{2}}-\vec{h_{1}}\wedge\vec{h_{2}}=\vec{a_{1}}\wedge\vec{h_{1}}-\vec{a_{2}}\wedge\vec{h_{2}}.$$ $$\vec{a_{2}}\wedge\vec{a_{3}}-\vec{h_{2}}\wedge\vec{h_{3}}=\vec{a_{2}}\wedge\vec{h_{2}}-\vec{a_{3}}\wedge\vec{h_{3}}$$ $$\vec{a_{3}}\wedge\vec{a_{1}}-\vec{h_{3}}\wedge\vec{h_{1}}=\vec{a_{3}}\wedge\vec{h_{3}}-\vec{a_{3}}\wedge\vec{h_{1}}$$

получим $\eqref{eq:first}$.

Разумеется, так же доказывается вообще, что треугольники $A_{i}A_{j}A_{k}$ и $H_{i}H_{j}H_{k}$, равновелики и одинаково ориентированы (для всех $i \neq j \neq k$ ); в частности, это относится к треугольникам $A_{3}A_{4}A_{1}$ и $H_{3}H_{4}H_{1}$. Отсюда, следует равенство площадей четырехугольников $A_{1}A_{2}A_{3}A_{4}$ и $H_{1}H_{2}H_{3}H_{4}$.

Более того, оба эти четырёхугольника будут одновременно либо (а) выпуклыми, либо (б) невыпуклыми, но несамопересекающимися, либо (в) самопересекающимися: если все четыре треугольника $A_{1}A_{2}A_{3}, A_{2}A_{3}A_{4}, A_{3}A_{4}A_{1}, A_{4}A_{1}A_{2}$ имеют одинаковую ориентацию, то (а), если один отличается по ориентации от трех других — (б); если «счет ничейный» 2:2 — (в).

Если бы мы попытались перевести это решение на элементарно геометрический язык, получилась бы громоздкая картина из множеств параллелограммов, очевидные соотношения между площадями которых запутаны из-за особенностей расположения. Более элегантное геометрическое решение (требующее, однако, некоторых вычислений: в частности оно использует формулу $\tan\alpha+\tan\beta=(1-\tan\alpha\tan\beta){\tan(\alpha+\beta)})$ основано на полезных соотношениях, показанных на рисунке 2, где $H$ — точка пересечения высот треугольника $ABC$. $O$ — центр описанной вокруг него окружности, $K$ — середина стороны $AB$).

Рис.2. $\overrightarrow{HC}=2\overrightarrow{KO}=\cot\hat{C}\times R^{90^{\circ}}(\overrightarrow{AB})$

На этом пути сразу ясно, что для четырёхугольника $A_{1}A_{2}A_{3}A_{4}$, вписанного в окружность, «ортоцентрический» четырёхугольник $H_{1}H_{2}H_{3}H_{4}$ будет ему не только равновелик, но и конгруэнтен (в общем случае, как следует из равенства, площадей треугольников $A_{i}A_{j}A_{k}$ и $H_{i}H_{j}H_{k}$ эти четырёхугольники аффинно эквивалентны, то есть один получается из другого линейным преобразованием координат).

Б. Батырев. Н. Васильев. В. Трофимов

M683. О расположении разноцветных кружков

Задачa из журнала «Квант» (1981 год, 5 выпуск)

Условие

Несколько кружков одинакового размера положили на стол так, что никакие два не перекрываются. Докажите, что кружки можно раскрасить в четыре цвета так, что любые два касающиеся кружка будут окрашены в разные цвета. Найдите расположение кружков, при котором трех цветов для такой раскраски недостаточно.

Доказательство

Доказательство возможности требуемой раскраски проведем индукцией по числу кружков [latex]n[/latex]. При [latex]n\leq 4[/latex] утверждение очевидно. Предположим, что оно справедливо для любого расположения [latex]k[/latex] кружков. Пусть на столе лежит [latex]k+1[/latex] кружков. Зафиксируем на плоскости произвольную точку [latex]M[/latex] и рассмотрим кружок, центр [latex]O[/latex] которого находится на наибольшем расстоянии от [latex]M[/latex] (если таких кружков несколько, возьмем любой из них). Нетрудно убедиться, что выбранного кружка касается не более двух других (центры всех кружков лежат в круге [latex]\left ( M, \left | OM \right | \right )[/latex] — рис. 1). Отбросим кружок с центром [latex]O[/latex] и раскрасим нужным образом в четыре цвета оставшиеся [latex]k[/latex] кружков (по предположению индукции это можно сделать). Вернем теперь кружок с центром [latex]O[/latex] на место. Поскольку он касается не более трех из уже покрашенных кружков, его можно раскрасить в тот цвет, который не был использован при раскраске касающихся его соседей.

Утверждение доказано.

Рисунок 1.

На рисунке 2 изображены 11 кружков, для нужной раскраски которых трех цветов недостаточно. Действительно, предположив, что эти кружки можно раскрасить тремя цветами, получим, что кружки [latex]A, B, C, D, E[/latex] должны быть окрашены одинаково. Но это невозможно, поскольку кружки [latex]A[/latex] и [latex]E[/latex] касаются.

Рисунок 2.

M674. Геометрическая задача

Задача из журнала «Квант» (1981 № 3)

Условие

На сторонах $BC, AC, AB$ остроугольного треугольника $ABC$ взяты точки $A_1, B_1, C_1$ соответственно. Известно, что центр описанной окружности совпадает с точкой пересечения высот треугольника $ABC$ окружности совпадают с точкой пересечения высот треугольника $A_1B_1C_1$. Докажите что треугольники $ABC$ и $A_1B _1C _1$ подобны.

Решение

Пусть $A_0,B_0,C_0$ -середины сторон треугольника $ABC$. $O$ центр описанной около него окружности. Треугольник $A_0B_0C_0$ подобен треугольнику $ABC$, а точка $O$ является точкой пересечения его высот.

Рассмотрим преобразования подобнo $F=H_O^k*R_O^k$ где $k= \frac{1}{\cos(α)}$. При этом точки $F(A_0), F(B_0)$ и $F(C_0)$ будут принадлежать прямым $BC, AC,$ и $AB$ соответственно. Таким образом, при изменение $α$ мы получаем целое семейство треугольников с общим ортоцентром, вписанных в треугольник $ABC$ и ему подобных. Осталось показать, что треугольник $A_1B_1C_1$ принадлежит этому семейству.

Выберем $α= ∠B_0OB_1$ так, что $F(B_0)=B_1$; пусть $F(A_0)=A_2, F(C_0)=C_2$ Точка $O$ служит пересечением высот треугольников $A_1B_1C_1$ и $ F(A_0B_0C_0)= A_2B_1C_2$; значит, сторона $A_2C_2$ должна быть параллельна стороне $A_1C_1$ или совпадать с ней. Но ясно, что высота треугольника $A_2B_1C_2$, опущенные из вершины $A_2$ и $C_2$, не могут пройти через $O$, за исключением того случая, когда $A_1B_1C_1$ и $A_2B_1C_2$ совпадают.

В заключение заметим, что в это решение остроугольность $ABC$ не использовалась; утверждение верно для любого треугольника $ABC$, и любых точек $A_1,B_1,C_1$ и на прямых $BC,AC,AB$.