M1710. Докажите неравенство

Задача из журнала «Квант» (1999 год, 6 выпуск)

Условие

Пусть $x, \ y, \ z, \ p, \ q, \ r$ — положительные числа, такие, что $p+q+r=1$, $x^{p}y^{q}z^{r}=1.$ Докажите неравенство $$\frac{p^2x^2}{qy+rz}+\frac{q^2y^2}{px+rz}+\frac{r^2z^2}{px+qy} \geqslant \frac{1}{2}$$

Решение

Докажем вначале некоторые вспомогательные неравенства.

Лемма 1.$$\begin{equation}\label{eq:m1710_first} x^{\alpha}-\alpha x \leqslant 1 — \alpha \end{equation},$$ где $x\gt0, \ 0 \lt \alpha \lt 1.$

При $x\gt0$ рассмотрим функцию
$$f\left ( x \right )=x^{\alpha}-\alpha x,$$ где $0\lt\alpha\lt1.$ Имеем $${f}’\left ( x \right )=\alpha \left ( x^{\alpha-1}-1 \right ) \begin{cases} \gt0 \text { при } 0 \lt x \lt 1\\
\lt0 \text { при } x \gt 1
\end{cases}$$

Следовательно функция возрастает, пока $x$ изменяется в промежутке $\left ( 0; \ 1 \right ]$ и убывает в промежутке $\left [ 1; +\infty \right ).$ Отсюда ясно, что $f\left ( 1 \right )=1-\alpha$ будет наибольшим значением функции в промежутке $\left ( 0; +\infty \right ).$

Лемма 2.$$\begin{equation}\label{eq:m1710_second} a^{\alpha}b^{\beta} \leqslant \alpha a + \beta b\end{equation},$$ где $a, \ b, \ \alpha, \ \beta \gt 0, \ \alpha + \beta = 1.$

Для доказательства достаточно положить в $\eqref{eq:m1710_first}$ $x=\frac{a}{b}$ и обозначить $1- \alpha$ через $\beta.$

Лемма 3.$$a^{\alpha}b^{\beta}c^{\gamma} \leqslant \alpha a + \beta b + \gamma c,$$ где $a, \ b, \ c, \ \alpha, \ \beta, \ \gamma \gt 0, \ \alpha + \beta + \gamma=1.$

Для доказательства достаточно дважды применить неравенство $\eqref{eq:m1710_second}$:
$$a^{\alpha}b^{\beta}c^{\gamma}=a^{\alpha} \left ( b^{\frac{\beta}{\beta + \gamma}}c^{\frac{\gamma}{\beta + \gamma}} \right )^{\beta + \gamma} \leqslant \alpha a + \left ( \beta + \gamma \right )b^{\frac{\beta}{\beta + \gamma}}c^{\frac{\gamma}{\beta + \gamma}} \leqslant \\
\leqslant \alpha a + \left ( \beta + \gamma \right )+ \left ( \frac{\beta}{\beta + \gamma}b+\frac{\gamma}{\beta + \gamma}c \right ) \leqslant \alpha a + \beta b + \gamma c,$$что и требовалось доказать.

Аналогично можно было бы совершить и переход от $n$ к $n + 1$ и доказать — по методу математической индукции — общее неравенство, которое (в измененных обозначениях) имеет вид
$$\begin{equation}\label{eq:m1710_third} {a_1}^{q_1}{a_2}^{q_2} \ldots {a_n}^{q_n} \leqslant q_1a_1 + q_2a_2 + \ldots + q_na_n, \end{equation}$$ (где $a_1,\ldots,a_n, \ q_1,\ldots,q_n\gt0, \ q_1+\ldots+q_n=1$).
Равенство достигается лишь тогда, когда $a_1 = \ldots = a_n.$

Перейдем теперь к доказательству неравенства задачи.
Воспользуемся неравенством Коши — Буняковского
$$\left (u_1 u_2 + v_1 v_2 + w_1 w_2 \right )^2 \leqslant \left ( {u_1}^2 + {v_1}^2 + {w_1}^2 \right )\left ( {u_2}^2 + {v_2}^2 + {w_2}^2 \right ),$$ где $u_i, \ v_i, \ w_i \ \left (i = \overline {1, 2} \right )$ — действительные числа. Полагая
$$u_1 = \frac{px}{\sqrt{qy+rz}}, \ v_1 = \frac{qy}{\sqrt{px+rz}}, \ w_1 = \frac{rz}{\sqrt{px+qy}},\\
u_2 = \sqrt{qy+rz}, \ v_2 = \sqrt{px+rz}, \ w_2 = \sqrt{px+qy},$$ будем иметь неравенство
$$
\begin{multline}\left (px + qy + rz \right )^2 \leqslant \left ( \frac{p^2x^2}{qy + rz} + \frac{q^2y^2}{px + rz} + \frac{r^2z^2}{pz + qy} \right ) \times \\ \times 2 \left (px + qy + rz \right ),\end{multline}$$ из которого следует, что
$$\frac{p^2x^2}{qy + rz} + \frac{q^2y^2}{px + rz} + \frac{r^2z^2}{pz + qy} \geqslant \frac{1}{2} \left (px + qy + rz \right ).$$ Так как $p + q + r = 1$, то для оценки суммы $px + qy + rz$ снизу можно применить неравенство леммы 3:
$$px + qy + rz \geqslant x^p y^q z^r = 1.$$ Неравенство задачи доказано.

Замечание 1. Полагая в неравенстве $\eqref{eq:m1710_third}$ $q_1 = \ldots = q_n=\frac{1}{n}$, получим
$$\sqrt[n]{a_1 a_2 \ldots a_n} \leqslant \frac{a_1 + a_2 + \ldots + a_n}{n}.$$ Из неравенства $\eqref{eq:m1710_third}$ нетрудно вывести также и некоторые другие классические утверждения. Например, легко получить так называемое неравенство Коши — Гёльдера:
$$\left \{ \sum\limits_{i=1}^n a_i b_i \right \} \leqslant \left \{ \sum\limits_{i=1}^n a_i ^k \right \} ^ \frac{1}{k} \cdot \left \{ \sum\limits_{i=1}^n b_i ^{{k}’} \right \} ^ \frac{1}{{k}’}$$ (где $a_i, \ b_i \gt 0, \ k, \ {k}’ \gt 1, \ \frac{1}{k} + \frac{1}{{k}’} = 1$), а также неравенство, носящее имя Минковского:
$$\left \{ \sum\limits_{i=1}^n \left ( a_i + b_i \right ) ^k \right \} ^ \frac{1}{k} \leqslant \left \{ \sum\limits_{i=1}^n a_i ^k \right \} ^ \frac{1}{k} + \left \{ \sum\limits_{i=1}^n b_i ^k \right \} ^ \frac{1}{k}$$ (где $a_i, \ b_i \gt 0, \ k \gt 1$).

Замечание 2. Положим в неравенстве задачи $p = q = r = \frac{1}{3}:$
$$\frac{x^2}{y + z} + \frac{y^2}{z + x} + \frac{z^2}{x + y} \geqslant \frac{3}{2}.$$ Теперь положим $a = \frac{1}{x}, \ b = \frac{1}{y}, \ c = \frac{1}{z}.$ Получим:
$$\frac{1}{a^3 \left (b + c \right )} + \frac{1}{b^3 \left (c + a \right )} + \frac{1}{c^3 \left (a + b \right )} \geqslant \frac{3}{2},$$ где $a \gt 0, \ b \gt 0, \ c \gt 0, \ abc = 1.$

Эта задача предлагалась в 1995 году на Международной математической олимпиаде (см. задачу М1526).

С.Калинин, В.Сендеров

М1734. Уравнения

Задача из журнала «Квант» (2000 год, 2 выпуск)

Условие

Докажите, что уравнение [latex]\displaystyle \bigl (\frac{\sin\: x}{x} \bigm) ^\beta  = \cos x [/latex] на [latex] \displaystyle \bigl(0;\frac{\pi}{2} \bigm)[/latex] не имеет решений при [latex] \beta \leqslant 3 [/latex], но имеет единственное решение при [latex]\beta  > 3 [/latex].

Решение

Такие задачи обычно сводятся к исследованию функции с помощью производных. Трудность состоит в том, чтобы суметь удачно выбрать исследуемую функцию.
Исследование уравнения задачи мы начнем с очевидного замечания: при [latex] \beta \leqslant 0 [/latex] оно решений не имеет. В самом деле, поскольку [latex] \sin x < x [/latex] при [latex]x > 0 [/latex], то при [latex] \beta \leqslant 0 [/latex] на всем интервале  [latex] \displaystyle \bigl(0;\frac{\pi}{2} \bigm)[/latex] выполнено неравенство [latex]\displaystyle \bigl (\frac{\sin \: x}{x} \bigm) ^\beta \geqslant 1  [/latex].
Пусть [latex] \beta > 0 [/latex] . Заметим, что функция   [latex] \displaystyle \bigl (\frac{\sin\: x}{x} \bigm) ^\beta  — \cos\: x [/latex] обращается в ноль в тех же точках интервала [latex] \displaystyle \bigl(0;\frac{\pi}{2} \bigm),[/latex] что и функция $$ \displaystyle f(x) = \sin \:x \: \cos^{ \gamma} x — x,$$ где [latex]\gamma =- \frac{1}{\beta}< 0[/latex].
Изучим поведение [latex] f(x)[/latex] на полуинтервале [latex] \displaystyle \lbrack 0;\frac{\pi}{2} \bigm)[/latex]. Имеем: [latex]f(0)=0[/latex], [latex]f'(0)=0[/latex], [latex]f(x) \to +\infty[/latex] при [latex]\displaystyle x \to \frac{\pi}{2}[/latex] . Далее, [latex]f»(x)=-\sin\:x \cdot \phi(x)[/latex], где $$\phi(x) = (1+\gamma)^{2}\: \cos^{\gamma}\:x — \gamma(\gamma-1) \cos^{\gamma-2}x$$.
Заметим, что [latex] \phi(x)[/latex] имеет на  [latex]\displaystyle \bigl(0;\frac{\pi}{2} \bigm)[/latex] не более одного корня. Найдем знак функции [latex] \phi(x)[/latex] в окрестности нуля. Функция [latex] \phi(x)[/latex] положительна в некоторой окрестности точки [latex] 0[/latex] , если
$$\gamma(\gamma-1) < (1+\gamma)^{2},\\
2\gamma + 1 > -\gamma,\\
1 > -3\gamma,\beta>3.$$

Легко видеть, что при [latex] 0 <\beta \leqslant 3[/latex] на всем интервале  [latex]\displaystyle \bigl(0;\frac{\pi}{2} \bigm)[/latex] выполняется неравенство [latex] \phi(x) < 0[/latex].
Теперь мы знаем ход изменений функции  [latex] f(x)[/latex] на рассматриваемом интервале (рис. а и б). Тем самым утверждение задачи доказано.

Замечание. На рисунках в и г изображены графики функции  [latex] f(x)[/latex] при  [latex] \beta < 0 [/latex] ; полезно проследить за изменением вида этого графика при изменении числа [latex] \beta [/latex] от  [latex] 0 [/latex] до  [latex] +\infty [/latex], а затем от [latex] 0 [/latex] до [latex] -\infty [/latex].

 

M1709. Окружность и прямоугольник

Задача из журнала «Квант» (1999 год, 6 выпуск)

Условие

Рис. 1

Окружность пересекает стороны прямоугольника в восьми точках, которые последовательно занумерованы. Докажите, что площадь четырехугольника с вершинами в точках с нечетными номерами равна площади четырехугольника с вершинами в точках с четными номерами (рис. 1).

Решение

Сначала запишем вспомогательное равенство для отрезков горизонтальных сторон прямоугольника $KLMN$, выступающих за пределы окружности (рис.2):

Рис. 2
$$LA_{3}+NA_{7}=MA_{4}+KA_{8}$$

Это равенство следует хотя бы из того, что трапеция $A_{8}A_{3}A_{4}A_{7}$ — равнобочная. Аналогично получаем другое вспомогательное равенство для отрезков вертикальных сторон: $KA_{1}+MA_{5}=LA_{2}+NA_{6}.$ Третье вспомогательное равенство получим, если приравняем произведения левых и произведения правых частей первых двух. Обозначив через $a$ длину горизонтальной стороны прямоугольника $KLMN$, а через $b$ — длину его вертикальной стороны, запишем основное равенство:
$$\begin{multline}
LA_{3}\left ( b-KA_{1} \right )+NA_{7}\left ( b-MA_{5} \right )+ \\ + KA_{1}\left ( a-NA_{7} \right )+MA_{5}\left ( a-LA_{3} \right )= \\
=MA_{4}\left ( b-NA_{6} \right )+KA_{8}\left ( b-LA_{2} \right )+ \\ + LA_{2}\left ( a-MA_{4} \right )+NA_{6}\left ( a-KA_{8} \right ).
\end{multline}$$

Это равенство непосредственно следует из трех вспомогательных равенств. Оно означает, что сумма площадей четырех прямоугольных треугольников $LA_{1}A_{3}$, $NA_{5}A_{7}$, $KA_{7}A_{1}$ и $MA_{3}A_{5}$ равна сумме площадей треугольников $MA_{6}A_{4}$, $KA_{2}A_{8}$, $LA_{4}A_{2}$ и $NA_{8}A_{6}.$ Но в таком случае площади четырехугольников $A_{1}A_{3}A_{5}A_{7}$ и $A_{2}A_{4}A_{6}A_{8}$ равны.

В. Произволов

M1724

Задача из журнала «Квант» (2000 год, 2 выпуск)

Условие задачи

В треугольнике [latex] ABC [/latex] проведены высоты [latex] AD [/latex] и [latex] CE [/latex], пересекающиеся в точке [latex] O [/latex](рис.1). Прямая [latex] DE [/latex] пересекает продолжение стороны [latex] AC [/latex] в точке [latex] K[/latex].

Докажите, что медиана [latex] BM [/latex] треугольника [latex] ABC [/latex] перпендикулярна прямой [latex] OK [/latex].

Решение

Докажем, что прямая [latex] OM [/latex] перпендикулярна на [latex] KB [/latex] (рис.1).
Отсюда непосредственно будет следовать утверждение задачи, поскольку в этом случае [latex] O [/latex] окажется ортоцентром треугольника [latex] KBM [/latex] (рис.2).

Пусть основание перпендикуляра, опущенного из точки [latex] O [/latex] на прямую [latex] BK [/latex], служит точка [latex] N [/latex] (рис.3).

Поскольку точки [latex] E [/latex] и [latex] N [/latex] лежат на окружности с диаметром [latex] OB [/latex], то угол [latex] BND [/latex] равен углу [latex] BED [/latex]. Аналогично, четырехугольник [latex] AEDC [/latex] вписан в окружность с диаметром [latex] AC [/latex].

Поэтому угол [latex] BED [/latex] равен углу [latex] ACB[/latex]. Таким образом, сумма углов [latex] KND [/latex] и [latex] ACB [/latex] равна [latex]180^\circ[/latex], т.е. четырехугольник [latex] KNDC [/latex] вписанный.

Значит, угол [latex] NCK [/latex] равен углу [latex] NDK [/latex]. Но угол [latex] NDE [/latex] равен углу [latex] NBE [/latex] в силу того, что точки[latex] B [/latex],[latex] D [/latex],[latex] E [/latex] и [latex] N [/latex], как мы уже отмечали, лежат на одной окружности с диаметром [latex] OB [/latex]. Поэтому равны углы [latex] NBA [/latex] и [latex] NCA [/latex]. Т.е. точка [latex] N [/latex] лежит на описанной окружности треугольника [latex] ABC [/latex].

Нам осталось совсем немного. Продолжим прямую [latex] NO [/latex] до пересечения с описанной окружностью треугольника [latex] ABC [/latex] в точке [latex] P [/latex] (рис.4).

Так как угол [latex] BNP [/latex] прямой, то [latex] BP [/latex] — диаметр этой окружности. Значит, углы [latex] BAP [/latex] и [latex] BCP [/latex] прямые. Поэтому отрезок [latex] AP [/latex] параллелен [latex] CE [/latex], а [latex] PC [/latex] параллелен [latex] AD [/latex]. Но отсюда [latex] APCO [/latex]- параллелограмм, и прямая [latex] NO [/latex] делит [latex] AC [/latex] пополам, что и требовалось доказать.

М. Волкевич

М1574. Задача о связи радиусов описанных окружностей соответствующих треугольников шестиугольника и его полупериметра

Задача из журнала «Квант» (1996 год, 6 выпуск)

Условие

В выпуклом шестиугольнике [latex]ABCDEF[/latex] [latex]AB||ED[/latex], [latex]BC||FE[/latex], [latex]CD||AF[/latex]. Пусть [latex]R_A[/latex], [latex]R_C[/latex], [latex]R_E[/latex] — радиусы окружностей, описанных около треугольников соответственно, а [latex]p[/latex] — полупериметр шестиугольника. Докажите, что:
$$R_A+R_C+R_E\geq p$$

Иллюстрация к задаче

hexagon

Решение

Первое решение

Пусть длины сторон [latex]AB[/latex], [latex]BC[/latex], [latex]CD[/latex], [latex]DE[/latex], [latex]EF[/latex] и [latex]FA[/latex] равны [latex]a[/latex], [latex]b[/latex], [latex]c[/latex], [latex]d[/latex], [latex]e[/latex] и [latex]f[/latex] соответственно. Построим [latex]AP\perp BC[/latex], [latex]AS\perp EF[/latex], [latex]DQ\perp BC[/latex] и [latex]DR\perp EF[/latex]. Тогда [latex]PQRS[/latex] — прямоугольник и [latex]BF\geq PS=QR[/latex]. Следовательно, [latex]2BF\geq PS+QR[/latex] и тогда [latex]2BF\geq (a\sin B+f\sin C)+(c\sin C+d\sin B)[/latex] (мы воспользовались тем, что [latex]\angle A=\angle D[/latex], [latex]\angle B=\angle E[/latex], [latex]\angle C=\angle F[/latex]).

Аналогично,
$$2DB\geq (c\sin A+b\sin B)+(e\sin B+f\sin A),$$
$$2FD\geq (e\sin C+d\sin A)+(a\sin A+b\sin C).$$

Запишем выражение для [latex]R_A[/latex], [latex]R_C[/latex], [latex]R_E[/latex]:
$R_A=\frac{BF}{2\sin A}$, $R_C=\frac{DB}{2\sin C}$ и $R_A=\frac{FD}{2\sin B}$.

Таким образом,
$$4(R_A+R_C+R_E)\geq$$ $$\geq a(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B})+b(\frac{\sin B}{\sin C}+\frac{\sin C}{\sin B})+…\geq$$ $$\geq 2(a+b+…)=4p$$
следовательно, [latex]R_A+R_C+R_E\geq p[/latex]. Равенство достигается тогда и только тогда, когда [latex]\angle A=\angle B=\angle C[/latex] и [latex]BF\perp BC[/latex], то есть в случае правильного шестиугольника.

Н. Седракян

Второе решение

Рассматриваемый шестиугольник [latex]ABCDEF[/latex] можно получить и некоего треугольника [latex]KLM[/latex], проведя прямые, параллельные сторонам этого треугольника.

Пусть [latex]KL=m[/latex], [latex]LM=k[/latex], [latex]MK=l[/latex], [latex]\angle LKM=\delta[/latex], высота к стороне [latex]LM[/latex] равна [latex]h[/latex], коэффициенты подобия (гомотетин) треугольников [latex]KCB[/latex], [latex]DLE[/latex] и [latex]AFM[/latex] по отношению к треугольнику [latex]KLM[/latex] равны соответственно [latex]x[/latex], [latex]y[/latex], [latex]z[/latex]. Понятно, что
$x+y\leq 1$, $y+z\leq 1$, $x+z\leq 1$ $(*)$
(мы допускаем ниже и случаи равенства). Если [latex]R[/latex] — радиус окружности, описанной около треугольника [latex]ABF[/latex],
$$R=\frac{BF}{2\sin\delta}\geq\frac{h(1-x)}{2\sin\delta}=\frac{S_KLM(1-x)}{2k\sin\delta}=\frac{lm}{k}(1-x).$$

Оценивая аналогично другие радиусы и выражая стороны шестиугольника через [latex]k[/latex], [latex]l[/latex], [latex]m[/latex], [latex]x[/latex], [latex]y[/latex], [latex]z[/latex], получим, что нам достаточно доказать неравенство
$$\frac{lm}{k}(1-x)+\frac{mk}{l}(1-y)+\frac{kl}{m}(1-z)\geq$$ $$\geq k(1+x-y-z)+l(1+z-x-y)+$$ $$+m(1+y-z-x).$$ $(**)$

Это неравенство линейно относительно . Но переменные неотрицательны и удовлетворяют еще условию $(*)$ (на самом деле они больше нуля и неравенства $(*)$ строгие, но мы несколько расширяем область их изменения). Областью изменения их является многогранник в координатном пространстве [latex](x; y; z)[/latex] с вершинами [latex](0; 0; 0)[/latex], [latex](1; 0; 0)[/latex], [latex](0; 1; 0)[/latex], [latex](0; 0; 1)[/latex], [latex](\frac{1}{2}; \frac{1}{2}; \frac{1}{2})[/latex]. Достаточно проверить, что неравенство $(**)$ выполняется в этих вершинах. Например, при [latex]x=y=z=\frac{1}{2}[/latex] и при [latex]x=y=z=0[/latex] получаем неравенство
$$\frac{lm}{k}+\frac{mk}{l}+\frac{kl}{m}\geq k+l+m;$$
оно легко доказывается сложением очевидных неравенств
$\frac{kl}{m}+\frac{mk}{l}\geq 2k$, $\frac{kl}{m}+\frac{lm}{k}\geq 2l$, $\frac{lm}{k}+\frac{mk}{l}\geq 2m$.
Для остальных трех вершин неравенство $(**)$ очевидно.

И. Шарыгин

Замечание

Для центрально-симметричных шестиугольников эта задача эквивалентна замечательному неравенству Эрдеша-Морделла: для любой точки [latex]M[/latex] внутри треугольника сумма расстояний от [latex]M[/latex] до вершин по крайней мере вдвое больше суммы расстояний от [latex]M[/latex] до сторон (опустите перпендикуляры [latex]MB[/latex], [latex]MD[/latex], [latex]MF[/latex] на стороны и постройте параллелограммы [latex]BMFA[/latex], [latex]DMBC[/latex], [latex]FMDE[/latex]; радиусы описанных окружностей треугольников [latex]BMF[/latex], [latex]DMB[/latex], [latex]FMD[/latex] равны [latex]R_A[/latex], [latex]R_C[/latex], [latex]R_E[/latex] в условии и равны расстояниям от точки [latex]M[/latex] до вершин треугольника).