Форматы семантической разметки

$\DeclareMathOperator{\ctg}{ctg}\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\arctg}{arctg} \newcommand{\rndBrcts}[1]{\left ( #1 \right )} \newcommand{\abs}[1]{\left | #1 \right |}$

  1. .author — автор задачи или решения
  2. .list-latin-bracket — список a) b) c)
  3. .list-cyrilic — список а) б) в)
  4. .list-digits-bracket — список 1) 2) 3)
  5. .literature — список литературы
  6. .literature:before — слово «Литература» перед этим добавляется автоматически
  7. .definition — определение в целом
  8. .concept — определяемое понятие внутри определения
  9. .theorem — вся теорема в целом
  10. .lemma — вся лемма в целом
  11. .provement — доказательство внутри теоремы, леммы и т.п.
  12. .provement:before — начало доказательства, слово «Доказательство» пишется автоматически
  13. .provement:after — конец доказательства, квадратик рисуется автоматически
  14. .consequence — следствие
  15. .criterion — критерий
  16. .property — свойства чего-либо
  17. .remark — замечание
  18. .examples — примеры в целом
  19. .example — пример внутри примеров
  20. .solution — решение внутри примера
  21. .example .statement — условие внутри примераclass
  22. section p:nth-child(1) — часть внутри абзаца
  23. section p:nth-last-child(1) — последняя часть внутри абзаца
  24. .see-also — смотри также
  25. article — статья
  26. section — раздел статьи
  27. .type — выделение заголовка блока, например слова «определение» или «теорема».
  28. .llms-main — ?
  29. .statement > p — ?
<div class = "theorem">
<p class = "statement">
<span class = "type">Теорема.</span> Пусть существует $\lim \limits_{x \to x_0} \abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}} = K,$ где $0 \leqslant K \lt+\infty.$ Тогда $f\rndBrcts{x} = \underline O \rndBrcts{g\rndBrcts{x}}.$</p>
<p class = "provement">
Рассматриваем случай $x_0 \in \mathbb{R}.$ Зададим $\varepsilon = 1$ и найдем такое $\delta \gt 0,$ что для всех $x,$ удовлетворяющих условию $\abs{x-x_0} \lt \delta,$ справедливо неравенство $\abs{\abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}}-K} \lt 1.$ Последнее неравенство равносильно тому, что
$$K-1 \lt \abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}} \lt K+1.$$ Умножая правое неравенство на $\abs{g\rndBrcts{x}},$ получаем утверждение теоремы.
</p>
</div>

Теорема. Пусть существует $\lim \limits_{x \to x_0} \abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}} = K,$ где $0 \leqslant K \lt+\infty.$ Тогда $f\rndBrcts{x} = \underline O \rndBrcts{g\rndBrcts{x}}.$

Рассматриваем случай $x_0 \in \mathbb{R}.$ Зададим $\varepsilon = 1$ и найдем такое $\delta \gt 0,$ что для всех $x,$ удовлетворяющих условию $\abs{x-x_0} \lt \delta,$ справедливо неравенство $\abs{\abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}}-K} \lt 1.$ Последнее неравенство равносильно тому, что
$$K-1 \lt \abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}} \lt K+1.$$ Умножая правое неравенство на $\abs{g\rndBrcts{x}},$ получаем утверждение теоремы.


<p class = "definition">
<span class = "type">Определение</span> Пусть функции $f$ и $g$ определены в <a href = "http://ib.mazurok.com/2018/06/10/limit_of_a_function" target="_blank" rel="noopener noreferrer">проколотой окрестности точки</a> $x_0$ (конечного или бесконечного) и $g\rndBrcts{x} \neq 0.$ Говорят, что $f\rndBrcts{x}$ является <span class = "term">$\overline{o}$-малой</span> относительно $g\rndBrcts{x}$ при $x \to x_0,$ если $\lim\limits_{x \to x_0} \frac{f\rndBrcts{x}}{g\rndBrcts{x}} = 0.$ Обозначают это так: $f\rndBrcts{x} = \overline o\rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0}.$
</p>

Определение Пусть функции $f$ и $g$ определены в проколотой окрестности точки $x_0$ (конечного или бесконечного) и $g\rndBrcts{x} \neq 0.$ Говорят, что $f\rndBrcts{x}$ является $\overline{o}$-малой относительно $g\rndBrcts{x}$ при $x \to x_0,$ если $\lim\limits_{x \to x_0} \frac{f\rndBrcts{x}}{g\rndBrcts{x}} = 0.$ Обозначают это так: $f\rndBrcts{x} = \overline o\rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0}.$


<section class = "see-also">
<h2>Смотрите также</h2>
<ol>
<li><a href = "https://www.dropbox.com/s/1rz1bs2hg0pbi0g/Ter-Krikorov.djvu" target = "_blank" rel="noopener noreferrer">Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. - С. 116-121.</a></li>
<li><a href = "https://www.dropbox.com/s/bmcb3ywhh4hms9l/Kudriavcev1.pdf" target = "_blank" rel="noopener noreferrer">Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. - 5-е изд., перераб. и доп. - Москва: Дрофа, 2003. - 703 с. - С. 253-271.</a></li>
<li><a href = "https://www.dropbox.com/s/1c4fffjbxge8dwe/Fihtengolc_t1_1962ru.djvu" target = "_blank" rel="noopener noreferrer">Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. - 5-е изд., стереотип. - Москва: Физматгиз, 1962. - 607 с. - С. 136-146.</a></li>
</ol>
</section>

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. - С. 116-121.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. - 5-е изд., перераб. и доп. - Москва: Дрофа, 2003. - 703 с. - С. 253-271.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. - 5-е изд., стереотип. - Москва: Физматгиз, 1962. - 607 с. - С. 136-146.

<ol class="list-cyrilic">
<li>Пункт а</li>
<li>Пункт б</li>
</ol>
  1. Пункт а
  2. Пункт б

<section class = "examples">
<h2>Примеры решения задач</h2>
<p>Рассмотрим примеры задач, в которых могут использоваться эквивалентные функции и символы Ландау. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.</p>
<ol>
<li class = "example">Найти предел $\lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{e^{x-1}-1}}{\rndBrcts{x-1}\sin{ \rndBrcts{x-1}}}.$
<details>
<summary>Решение</summary>
$\lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{e^{x-1}-1}}{\rndBrcts{x-1}\sin{ \rndBrcts{x-1}}} = \\
= \left[
\begin{gathered}
\text{При }x \to 1\\
e^{x-1}-1 \sim x-1\\
\sin{\rndBrcts{x-1}} \sim x-1\\
\end{gathered}
\right ] = \\
= \lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{x-1}}{\rndBrcts{x-1}\rndBrcts{x-1}} = \\
= \lim\limits_{x \to 1}\displaystyle\frac{x^{2018}-2x+1}{x-1} = \\
= \left[
\begin{gathered}
\rndBrcts{x^{2018}-2x+1} \bigg|_{x=1} = 0 \\
\Leftrightarrow \\
\rndBrcts{x^{2018}-2x+1} \vdots \rndBrcts{x-1}\\
\text{Разделим многочлен} \rndBrcts{x^{2018}-2x+1} \\
\text{ на двучлен } \rndBrcts{x-1}\\
\text{при помощи схемы Горнера:}\\
\ \ \ 1 \ 0 \ 0 \ 0 \ \ldots \ 0 \ -2 \ 1\\
1 \ 1 \ 1 \ 1 \ 1 \ \ldots \ 1 \ -1 \ 0\\
\end{gathered}
\right ] = \\
= \lim\limits_{x \to 1}\frac{\rndBrcts{x-1}\rndBrcts{x^{2017}+x^{2016}\ldots+x^2+x-1}}{\rndBrcts{x-1}} = \\ = \lim\limits_{x \to 1}\rndBrcts{x^{2017}+x^{2016}+\ldots+x^2+x-1} = 2016$
</details>
</li>
</ol>
</section>

Примеры решения задач

Рассмотрим примеры задач, в которых могут использоваться эквивалентные функции и символы Ландау. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Найти предел $\lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{e^{x-1}-1}}{\rndBrcts{x-1}\sin{ \rndBrcts{x-1}}}.$
    Решение

    $\lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{e^{x-1}-1}}{\rndBrcts{x-1}\sin{ \rndBrcts{x-1}}} = \\
    = \left[
    \begin{gathered}
    \text{При }x \to 1\\
    e^{x-1}-1 \sim x-1\\
    \sin{\rndBrcts{x-1}} \sim x-1\\
    \end{gathered}
    \right ] = \\
    = \lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{x-1}}{\rndBrcts{x-1}\rndBrcts{x-1}} = \\
    = \lim\limits_{x \to 1}\displaystyle\frac{x^{2018}-2x+1}{x-1} = \\
    = \left[
    \begin{gathered}
    \rndBrcts{x^{2018}-2x+1} \bigg|_{x=1} = 0 \\
    \Leftrightarrow \\
    \rndBrcts{x^{2018}-2x+1} \vdots \rndBrcts{x-1}\\
    \text{Разделим многочлен} \rndBrcts{x^{2018}-2x+1} \\
    \text{ на двучлен } \rndBrcts{x-1}\\
    \text{при помощи схемы Горнера:}\\
    \ \ \ 1 \ 0 \ 0 \ 0 \ \ldots \ 0 \ -2 \ 1\\
    1 \ 1 \ 1 \ 1 \ 1 \ \ldots \ 1 \ -1 \ 0\\
    \end{gathered}
    \right ] = \\
    = \lim\limits_{x \to 1}\frac{\rndBrcts{x-1}\rndBrcts{x^{2017}+x^{2016}\ldots+x^2+x-1}}{\rndBrcts{x-1}} = \\ = \lim\limits_{x \to 1}\rndBrcts{x^{2017}+x^{2016}+\ldots+x^2+x-1} = 2016$

Разметка доказательств

Предложенный выше класс для разметки доказательств хорошо работает только если все доказательство помещается в один абзац (тег Р). Для доказательств состоящих из нескольких абзацев следует использовать другой класс - proof. По ссылке https://jsfiddle.net/mazurok/bfjxuewv/24/ вы сможете найти пример использования (окно HTML) и как это выглядит. Если любопытно, то окне CSS можно посмотреть, как мы добились такого эффекта.

4.12 Эквивалентные функции. Символы Ландау

$\DeclareMathOperator{\ctg}{ctg}\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\arctg}{arctg} \newcommand{\rndBrcts}[1]{\left ( #1 \right )} \newcommand{\abs}[1]{\left | #1 \right |}$Определение. Пусть функции $f$ и $g$ отличны от нуля в проколотой окрестности точки $x_0$ (равной, быть может, $+\infty,$ $-\infty$ или $\infty$). Говорят, что функции $f$ и $g$ эквивалентны при $x \to x_0,$ если $\lim\limits_{x \to x_0}\frac{f\rndBrcts{x}}{g\rndBrcts{x}} = 1.$ Обозначают это так: $f\rndBrcts{x} \sim g\rndBrcts{x} \ \rndBrcts{x \to x_0}.$

В терминах этого определения найденные ранее (см. Первый замечательный предел, Второй замечательный предел) пределы можно переписать следующим образом (все соотношения формулируются для случая $x \to 0$):
$$
\sin{x} \sim x, \\
\tg{x} \sim x, \\
1-\cos{x} \sim \frac{1}{2}x^2, \\
\arcsin{x} \sim x, \\
\arctg{x} \sim x, \\
a^x-1 \sim x \ln{a}, \\
\log_a{\rndBrcts{1+x}} \sim \frac{x}{\ln{a}}, \\ \
\rndBrcts{1+x}^\alpha-1\sim \alpha \cdot x.
$$

Эти соотношения останутся в силе, если в них вместо переменной $x$ записать отличную от нуля функцию $\varphi \rndBrcts{x},$ стремящуюся к нулю при $x \to x_0.$ Например, $\sin{x^2} \sim x^2 \ \rndBrcts{x \to 0},$ $\tg{\frac{1}{x}} \sim \frac{1}{x} \ \rndBrcts{x \to \infty},$ $\tg{\sin{\rndBrcts{x-1}^2}} \sim \sin{\rndBrcts{x-1}^2} \sim \rndBrcts{x-1}^2 \ \rndBrcts{x \to 1}.$

Теорема (применение эквивалентных функций для нахождения пределов). Пусть $f\rndBrcts{x} \sim f_1\rndBrcts{x}$ и $g\rndBrcts{x} \sim g_1\rndBrcts{x}$ при $x \to x_0$ и пусть существует $\lim\limits_{x \to x_0}\frac{f_1\rndBrcts{x}}{g_1\rndBrcts{x}} = A.$ Тогда существует $\lim\limits_{x \to x_0}\frac{f\rndBrcts{x}}{g\rndBrcts{x}} = A.$

По определению эквивалентных функций, используя арифметические свойства пределов, получаем
$$\lim\limits_{x \to x_0}\frac{f\rndBrcts{x}}{g\rndBrcts{x}} = \lim\limits_{x \to x_0}\frac{f\rndBrcts{x}}{f_1\rndBrcts{x}} \cdot \frac{g_1\rndBrcts{x}}{g\rndBrcts{x}} \cdot \frac{f_1\rndBrcts{x}}{g_1\rndBrcts{x}} = 1 \cdot 1 \cdot A = A,$$ и теорема доказана.

Доказанная теорема означает, что при вычислении пределов в произведении и в частном функции можно заменять эквивалентными. При этом существование предела и его величина не изменяются.

Пример.
$$\lim\limits_{x \to 0} \frac{\arcsin{x} \cdot \rndBrcts{e^x-1}}{1-\cos{x}} = \lim\limits_{x \to 0} \frac{x \cdot x}{\frac{x^2}{2}} = 2$$

Сравнение бесконечно больших и бесконечно малых

Символами Ландау называются символы $\overline{o}$ и $\underline O.$ Дадим определение.

Определение Пусть функции $f$ и $g$ определены в проколотой окрестности точки $x_0$ (конечного или бесконечного) и $g\rndBrcts{x} \neq 0.$ Говорят, что $f\rndBrcts{x}$ является $\overline{o}$-малой относительно $g\rndBrcts{x}$ при $x \to x_0,$ если $\lim\limits_{x \to x_0} \frac{f\rndBrcts{x}}{g\rndBrcts{x}} = 0.$ Обозначают это так: $f\rndBrcts{x} = \overline o\rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0}.$

Если $f\rndBrcts{x} \to 0, \ g\rndBrcts{x} \to 0$ и $f\rndBrcts{x} = \overline o\rndBrcts{g\rndBrcts{x}}$ при $x \to x_0,$ то говорят, что $f\rndBrcts{x}$ является бесконечно малой более высокого порядка, чем $g\rndBrcts{x},$ при $x \to x_0.$ Если же $f\rndBrcts{x} \to \infty, \ g\rndBrcts{x} \to \infty$ и $f\rndBrcts{x} = \overline o\rndBrcts{g\rndBrcts{x}} \text{ при } x \to x_0,$ то говорят, что $g\rndBrcts{x}$ стремится к бесконечности быстрее, чем $f\rndBrcts{x},$ при $x \to x_0.$ Например, $\sin \rndBrcts{x^2} = \overline o\rndBrcts{x} \ \rndBrcts{x \to 0}, \ \tg^3{x} \cdot \sin{\frac{1}{x}} = \overline o\rndBrcts{x^2} \ \rndBrcts{x \to 0}.$

Определение. Пусть функции $f$ и $g$ определены в проколотой окрестности $x_0$ (конечного или бесконечного) и $g\rndBrcts{x} \neq 0.$ Говорят, что $f\rndBrcts{x}$ является $\underline O$-большим относительно $g\rndBrcts{x}$ при $x \to x_0,$ если существует такая проколотая окрестность $U_{\delta}$ точки $x_0,$ что для всех $x \in U_{\delta}$ справедливо неравенство $\abs{f\rndBrcts{x}} \leqslant c \cdot \abs{g\rndBrcts{x}},$ где постоянная $c$ не зависит от $x$ (но может зависеть от окрестности $U_{\delta}$). Обозначают это так: $f\rndBrcts{x} = \underline O \rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0}.$

Например, $x^2+2x^3 = \underline O \rndBrcts{x^2}.$

Теорема. Пусть существует $\lim \limits_{x \to x_0} \abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}} = K,$ где $0 \leqslant K \lt+\infty.$ Тогда $f\rndBrcts{x} = \underline O \rndBrcts{g\rndBrcts{x}}.$

Рассматриваем случай $x_0 \in \mathbb{R}.$ Зададим $\varepsilon = 1$ и найдем такое $\delta \gt 0,$ что для всех $x,$ удовлетворяющих условию $\abs{x-x_0} \lt \delta,$ справедливо неравенство $\abs{\abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}}-K} \lt 1.$ Последнее неравенство равносильно тому, что
$$K-1 \lt \abs{\frac{f\rndBrcts{x}}{g\rndBrcts{x}}} \lt K+1.$$ Умножая правое неравенство на $\abs{g\rndBrcts{x}},$ получаем утверждение теоремы.

Теорема (критерий эквивалентности функций). Для того, чтобы отличные от нуля функции $f$ и $g$ были эквивалентны при $x \to x_0,$ необходимо и достаточно, чтобы было выполнено равенство $f\rndBrcts{x} = g\rndBrcts{x}+\overline o\rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0}.$

Необходимость. Пусть $f\rndBrcts{x} \sim g\rndBrcts{x}$ при $x \to x_0.$ Тогда $\frac{f\rndBrcts{x}}{g\rndBrcts{x}}-1 \to 0 \ \rndBrcts{x \to x_0},$ т. е. $\frac{f\rndBrcts{x}}{g\rndBrcts{x}}-1 = h\rndBrcts{x},$ где $h\rndBrcts{x} \to 0 \ \rndBrcts{x \to x_0}.$ Отсюда следует, что $f\rndBrcts{x} = g\rndBrcts{x}+g\rndBrcts{x} \cdot h\rndBrcts{x}.$ Но $\frac{g\rndBrcts{x} \cdot h\rndBrcts{x}}{g\rndBrcts{x}} = h\rndBrcts{x},$ т. е. $g\rndBrcts{x} \cdot h\rndBrcts{x} = \overline o\rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0}.$

Достаточность. Если $f\rndBrcts{x} = g\rndBrcts{x}+\overline o\rndBrcts{g\rndBrcts{x}} \ \rndBrcts{x \to x_0},$ то $\frac{f\rndBrcts{x}}{g\rndBrcts{x}} = 1+\frac{\overline o\rndBrcts{g\rndBrcts{x}}}{g\rndBrcts{x}}$ и поэтому $\lim\limits_{x \to x_0} \frac{f\rndBrcts{x}}{g\rndBrcts{x}} = 1.$

Используя эту теорему, набор эквивалентных функций, выписанный нами ранее, можно переписать в следующем виде (всюду $x \to 0$):
$$
\sin{x} = x+\overline o\rndBrcts{x}, \\
\tg{x} = x+\overline o\rndBrcts{x}, \\
1-\cos{x} = \frac{1}{2}x^2+\overline o\rndBrcts{x^2}, \\
\arcsin{x}= x+\overline o\rndBrcts{x}, \\
\arctg{x} = x+\overline o\rndBrcts{x},\\
a^x-1 = x \ln{a}+\overline o\rndBrcts{x}, \\
\log_a{\rndBrcts{1+x}} = \frac{x}{\ln{a}} + \overline o\rndBrcts{x}, \\
\rndBrcts{1+x}^\alpha-1 = \alpha \cdot x + \overline o\rndBrcts{x}.
$$

С помощью этой таблицы можно вычислять пределы. Покажем это на примерах.

Пример 1.$$\lim\limits_{x \to 0}\frac{e^x-\sqrt[3]{1+x}}{2 \arctg{x}-\arcsin{x}} = \lim\limits_{x \to 0}\frac{e^x-1-\rndBrcts{\sqrt[3]{1+x}-1}}{2 \arctg{x}-\arcsin{x}} = \\ = \lim\limits_{x \to 0}\frac{x+\overline o\rndBrcts{x}-\rndBrcts{\frac{1}{3}x+\overline o\rndBrcts{x}}}{2\rndBrcts{x+\overline o\rndBrcts{x}}-x+\overline o\rndBrcts{x}} = \lim\limits_{x \to 0}\frac{\frac{2}{3}x+\overline o\rndBrcts{x}}{x+\overline o\rndBrcts{x}} = \\ = \lim\limits_{x \to 0}\frac{\frac{2}{3}+\frac{\overline o\rndBrcts{x}}{x}}{1+\frac{\overline o\rndBrcts{x}}{x}} = \frac{2}{3}$$

Пример 2. Раскрытие неопределенности $\left [ 1^\infty \right ].$ Пусть $\alpha\rndBrcts{x} \to 0 \rndBrcts{\alpha\rndBrcts{x} \neq 0}, \ \beta\rndBrcts{x} \to \infty.$ Тогда, в силу непрерывности показательной функции,
$$\lim\limits_{x \to x_0}\rndBrcts{1+\alpha\rndBrcts{x}}^{\beta\rndBrcts{x}} = \lim\limits_{x \to x_0}e^{\beta\rndBrcts{x}\ln \rndBrcts{{1+\alpha\rndBrcts{x}}}} = e^{\lim\limits_{x \to x_0}\beta\rndBrcts{x}\rndBrcts{\alpha\rndBrcts{x}+\overline o\rndBrcts{\alpha\rndBrcts{x}}}}.$$ Если существует $\lim\limits_{x \to x_0}\alpha\rndBrcts{x}\cdot\beta\rndBrcts{x} = A,$ то
$$\lim\limits_{x \to x_0}\beta\rndBrcts{x}\rndBrcts{\alpha\rndBrcts{x}+\overline o\rndBrcts{\alpha\rndBrcts{x}}} = \\ =\lim\limits_{x \to x_0}\beta\rndBrcts{x}\cdot\alpha\rndBrcts{x}\cdot\frac{\alpha\rndBrcts{x}+\overline o\rndBrcts{\alpha\rndBrcts{x}}}{\alpha\rndBrcts{x}} = \\ = \lim\limits_{x \to x_0}\beta\rndBrcts{x}\cdot\alpha\rndBrcts{x}\cdot\rndBrcts{1+\frac{\overline o\rndBrcts{\alpha\rndBrcts{x}}}{\alpha\rndBrcts{x}}}= A.$$ Поэтому
$$\lim\limits_{x \to x_0}\rndBrcts{1+\alpha\rndBrcts{x}}^{\beta\rndBrcts{x}} = e^A.$$

Упражнение. Пусть $\lim\limits_{x \to x_0}\alpha\rndBrcts{x} = 0, \lim\limits_{x \to x_0}\beta\rndBrcts{x} = \infty.$ Доказать, что $\lim\limits_{x \to x_0}\rndBrcts{1+\alpha\rndBrcts{x}}^{\beta\rndBrcts{x}} = 0,$ если $\lim\limits_{x \to x_0}\alpha\rndBrcts{x}\cdot\beta\rndBrcts{x} = -\infty.$ Если же $\lim\limits_{x \to x_0}\alpha\rndBrcts{x}\cdot\beta\rndBrcts{x} = +\infty,$ то $\lim\limits_{x \to x_0}\rndBrcts{1+\alpha\rndBrcts{x}}^{\beta\rndBrcts{x}} = +\infty.$

Примеры решения задач

Рассмотрим примеры задач, в которых могут использоваться эквивалентные функции и символы Ландау. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Найти предел $\lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{e^{x-1}-1}}{\rndBrcts{x-1}\sin{ \rndBrcts{x-1}}}.$
    Решение

    $\lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{e^{x-1}-1}}{\rndBrcts{x-1}\sin{ \rndBrcts{x-1}}} = \\
    = \left[
    \begin{gathered}
    \text{При }x \to 1\\
    e^{x-1}-1 \sim x-1\\
    \sin{\rndBrcts{x-1}} \sim x-1\\
    \end{gathered}
    \right ] = \\
    = \lim\limits_{x \to 1}\displaystyle\frac{\rndBrcts{x^{2018}-2x+1} \rndBrcts{x-1}}{\rndBrcts{x-1}\rndBrcts{x-1}} = \\
    = \lim\limits_{x \to 1}\displaystyle\frac{x^{2018}-2x+1}{x-1} = \\
    = \left[
    \begin{gathered}
    \rndBrcts{x^{2018}-2x+1} \bigg|_{x=1} = 0 \\
    \Leftrightarrow \\
    \rndBrcts{x^{2018}-2x+1} \vdots \rndBrcts{x-1}\\
    \text{Разделим многочлен} \rndBrcts{x^{2018}-2x+1} \\
    \text{ на двучлен } \rndBrcts{x-1}\\
    \text{при помощи схемы Горнера:}\\
    \ \ \ 1 \ 0 \ 0 \ 0 \ \ldots \ 0 \ -2 \ 1\\
    1 \ 1 \ 1 \ 1 \ 1 \ \ldots \ 1 \ -1 \ 0\\
    \end{gathered}
    \right ] = \\
    = \lim\limits_{x \to 1}\frac{\rndBrcts{x-1}\rndBrcts{x^{2017}+x^{2016}\ldots+x^2+x-1}}{\rndBrcts{x-1}} = \\ = \lim\limits_{x \to 1}\rndBrcts{x^{2017}+x^{2016}+\ldots+x^2+x-1} = 2016$

  2. Найти предел $\lim\limits_{x \to +\infty} \rndBrcts{\cos{\frac{1}{\sqrt{x}}}}^x.$
    Решение

    $\lim\limits_{x \to +\infty} \rndBrcts{\cos{\frac{1}{\sqrt{x}}}}^x = \lim\limits_{x \to +\infty}e^{x \ln{\cos{\frac{1}{\sqrt{x}}}}} =
    e^{\lim\limits_{x \to +\infty}x \ln{\cos{\frac{1}{\sqrt{x}}}}} = \\ =
    \left[
    \begin{gathered}
    \lim\limits_{x \to +\infty}x \ln{\cos{\frac{1}{\sqrt{x}}}} = \\ = \lim\limits_{x \to +\infty}x \ln{\rndBrcts{1+\rndBrcts{ \cos{\frac{1}{\sqrt{x}}}-1}}} = \\
    = \left[
    \begin{gathered}
    \text{При } x \to +\infty \\
    \ln{\rndBrcts{1 + \rndBrcts{ \cos{\frac{1}{\sqrt{x}}}-1}}} \sim \\ \sim \cos{\frac{1}{\sqrt{x}}}-1 = \\ = -2{\sin^2{\frac{1}{2\sqrt{x}}}} \sim \\ \sim -2 \cdot {\rndBrcts{\frac{1}{2\sqrt{x}}}}^2 = -\frac{1}{2x}
    \end{gathered}
    \right ] = \\
    = \lim\limits_{x \to +\infty}\frac{-x}{2x} = -\frac{1}{2}
    \end{gathered}
    \right ]
    = e^{-\frac{1}{2}}$

  3. Найти предел $\lim\limits_{x \to 0} \displaystyle\frac{\arctg{\rndBrcts{\rndBrcts{1+x}^3-1}}+2\tg{x}}{e^x-1+3\ln{\rndBrcts{1+x}}}.$
    Решение

    $\lim\limits_{x \to 0} \displaystyle\frac{\arctg{\rndBrcts{\rndBrcts{1+x}^3-1}}+2\tg{x}}{e^x-1+3\ln{\rndBrcts{1+x}}} = \\
    = \left[
    \begin{gathered}
    \text{При }x \to 0\\
    \arctg{\rndBrcts{\rndBrcts{1+x}^3-1}} = \\ =\rndBrcts{1+x}^3-1 + \overline o\rndBrcts{\rndBrcts{1+x}^3-1} = \\
    =\rndBrcts{1+x}^3-1+\overline o\rndBrcts{x} = \\ = 3x+\overline o\rndBrcts{x}+\overline o\rndBrcts{x}=3x+\overline o\rndBrcts{x}\\
    \tg{x} = x+\overline o\rndBrcts{x}\\
    e^x-1 = x+\overline o\rndBrcts{x}\\
    \ln{\rndBrcts{1+x}} = x+\overline o\rndBrcts{x}
    \end{gathered}
    \right ] = \\
    =\lim\limits_{x \to 0}\displaystyle\frac{3x+\overline o\rndBrcts{x}+2x+\overline o\rndBrcts{x}}{x+\overline o\rndBrcts{x}+3 \rndBrcts{x+\overline o\rndBrcts{x}}} =
    \lim\limits_{x \to 0}\displaystyle\frac{5x+\overline o\rndBrcts{x}}{4x+\overline o\rndBrcts{x}} = \\ =\lim\limits_{x \to 0}\displaystyle\frac{5+\frac{\overline o\rndBrcts{x}}{x}}{4+\frac{\overline o\rndBrcts{x}}{x}}=\frac{5}{4}$

    Здесь воспользовались простой леммой: если при $x\to x_0 \ f\rndBrcts{x} \sim g\rndBrcts{x},$ то $\overline o\rndBrcts{f\rndBrcts{x}} = \overline o\rndBrcts{g\rndBrcts{x}}.$ Читателю в качестве упражнения предлагается доказать ее самостоятельно.

  4. Найти предел $\lim\limits_{x \to a} \displaystyle\frac{a^x-x^a}{x-a}, \ a \gt 0.$
    Решение

    $\lim\limits_{x \to a} \displaystyle\frac{a^x-x^a}{x-a} = \lim\limits_{x \to a} \displaystyle\frac{\rndBrcts{a^x-a^a}-\rndBrcts{x^a-a^a}}{x-a} = \\ = \lim\limits_{x \to a} \displaystyle\frac{a^a\rndBrcts{a^{x-a}-1}-a^a\rndBrcts{\rndBrcts{\frac{x}{a}}^a-1}}{x-a} = \\
    = \lim\limits_{x \to a}\displaystyle\frac{a^a\rndBrcts{a^{x-a}-1}-a^a\rndBrcts{\rndBrcts{1+\rndBrcts{\displaystyle\frac{x}{a}-1}}^a-1}}{x-a} = \\
    = \left[
    \begin{gathered}
    \text{При }x \to a \\
    a^{x-a}-1 = \rndBrcts{x-a}\ln{a}+\overline o\rndBrcts{x-a} \\
    \rndBrcts{1+\rndBrcts{\frac{x}{a}-1}}^a-1 = \\
    = a\rndBrcts{\frac{x}{a}-1}+\overline o\rndBrcts{\frac{x}{a}-1} = \\
    = \rndBrcts{x-a}+\overline o\rndBrcts{x-a}
    \end{gathered}
    \right ] = \\
    = \lim\limits_{x \to a} \frac{a^a\rndBrcts{\rndBrcts{x-a}\ln{a}+\overline o\rndBrcts{x-a}}-a^a\rndBrcts{\rndBrcts{x-a}+\overline o\rndBrcts{x-a}}}{x-a} = \\ = \lim\limits_{x \to a} \displaystyle\frac{a^a\rndBrcts{x-a}\rndBrcts{\ln{a}-1}+\overline o\rndBrcts{x-a}}{x-a} = \\
    = a^a\rndBrcts{\ln{a}-1}$

  5. Доказать, что $\forall n \in \mathbb{N} \ \underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{n \text{ корней}} \sim \sqrt{x}$ при $x \to +\infty$
    Решение

    Докажем утверждение методом математической индукции по $n$ — количеству корней.

    База индукции. При $n = 1$ имеем $\sqrt{x} \sim \sqrt{x},$ что, очевидно, верно в силу рефлексивности бинарного отношения эквивалентности функций.

    Предположение индукции. Пусть утверждение верно для всех $n \leqslant k, \ k \geqslant 1.$

    Шаг индукции. Докажем теперь утверждение для $n = k+1.$ Покажем, что $\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k+1 \text{ корень}} \sim \sqrt{x},$ что равносильно тому, что $\lim\limits_{x \to +\infty}\displaystyle\frac{\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k+1 \text{ корень}}}{\sqrt{x}}=1.$ Имеем: $\displaystyle\frac{\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k+1 \text{ корень}}}{\sqrt{x}} = \displaystyle\frac{\sqrt{x}\sqrt{1+\frac{{\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k \text{ корней}}}}{x}}}{\sqrt{x}} = \\ = \displaystyle\sqrt{1+\frac{{\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k \text{ корней}}}}{x}}.$
    По индуктивному предположению $\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k \text{ корней}} \sim \sqrt{x},$ что по критерию эквивалентности означает, что $\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k \text{ корней}} = \sqrt{x}+\overline{o}\rndBrcts{\sqrt{x}} = \overline{o}\rndBrcts{x}.$ Тогда переходя к пределу имеем: $\lim\limits_{x \to +\infty}\displaystyle\frac{\underbrace{\sqrt{x+\sqrt{x+\ldots+\sqrt{x}}}}_{k+1 \text{ корень}}}{\sqrt{x}} = \lim\limits_{x \to +\infty}\sqrt{1+\frac{\overline{o}\rndBrcts{x}}{x}} = 1.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — С. 116-121.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — С. 253-271.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — С. 136-146.

Эквивалентные функции и символы Ландау

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме

M1710. Докажите неравенство

Задача из журнала «Квант» (1999 год, 6 выпуск)

Условие

Пусть $x, \ y, \ z, \ p, \ q, \ r$ — положительные числа, такие, что $p+q+r=1$, $x^{p}y^{q}z^{r}=1.$ Докажите неравенство $$\frac{p^2x^2}{qy+rz}+\frac{q^2y^2}{px+rz}+\frac{r^2z^2}{px+qy} \geqslant \frac{1}{2}$$

Решение

Докажем вначале некоторые вспомогательные неравенства.

Лемма 1.$$\begin{equation}\label{eq:m1710_first} x^{\alpha}-\alpha x \leqslant 1 — \alpha \end{equation},$$ где $x\gt0, \ 0 \lt \alpha \lt 1.$

При $x\gt0$ рассмотрим функцию
$$f\left ( x \right )=x^{\alpha}-\alpha x,$$ где $0\lt\alpha\lt1.$ Имеем $${f}’\left ( x \right )=\alpha \left ( x^{\alpha-1}-1 \right ) \begin{cases} \gt0 \text { при } 0 \lt x \lt 1\\
\lt0 \text { при } x \gt 1
\end{cases}$$

Следовательно функция возрастает, пока $x$ изменяется в промежутке $\left ( 0; \ 1 \right ]$ и убывает в промежутке $\left [ 1; +\infty \right ).$ Отсюда ясно, что $f\left ( 1 \right )=1-\alpha$ будет наибольшим значением функции в промежутке $\left ( 0; +\infty \right ).$

Лемма 2.$$\begin{equation}\label{eq:m1710_second} a^{\alpha}b^{\beta} \leqslant \alpha a + \beta b\end{equation},$$ где $a, \ b, \ \alpha, \ \beta \gt 0, \ \alpha + \beta = 1.$

Для доказательства достаточно положить в $\eqref{eq:m1710_first}$ $x=\frac{a}{b}$ и обозначить $1- \alpha$ через $\beta.$

Лемма 3.$$a^{\alpha}b^{\beta}c^{\gamma} \leqslant \alpha a + \beta b + \gamma c,$$ где $a, \ b, \ c, \ \alpha, \ \beta, \ \gamma \gt 0, \ \alpha + \beta + \gamma=1.$

Для доказательства достаточно дважды применить неравенство $\eqref{eq:m1710_second}$:
$$a^{\alpha}b^{\beta}c^{\gamma}=a^{\alpha} \left ( b^{\frac{\beta}{\beta + \gamma}}c^{\frac{\gamma}{\beta + \gamma}} \right )^{\beta + \gamma} \leqslant \alpha a + \left ( \beta + \gamma \right )b^{\frac{\beta}{\beta + \gamma}}c^{\frac{\gamma}{\beta + \gamma}} \leqslant \\
\leqslant \alpha a + \left ( \beta + \gamma \right )+ \left ( \frac{\beta}{\beta + \gamma}b+\frac{\gamma}{\beta + \gamma}c \right ) \leqslant \alpha a + \beta b + \gamma c,$$что и требовалось доказать.

Аналогично можно было бы совершить и переход от $n$ к $n + 1$ и доказать — по методу математической индукции — общее неравенство, которое (в измененных обозначениях) имеет вид
$$\begin{equation}\label{eq:m1710_third} {a_1}^{q_1}{a_2}^{q_2} \ldots {a_n}^{q_n} \leqslant q_1a_1 + q_2a_2 + \ldots + q_na_n, \end{equation}$$ (где $a_1,\ldots,a_n, \ q_1,\ldots,q_n\gt0, \ q_1+\ldots+q_n=1$).
Равенство достигается лишь тогда, когда $a_1 = \ldots = a_n.$

Перейдем теперь к доказательству неравенства задачи.
Воспользуемся неравенством Коши — Буняковского
$$\left (u_1 u_2 + v_1 v_2 + w_1 w_2 \right )^2 \leqslant \left ( {u_1}^2 + {v_1}^2 + {w_1}^2 \right )\left ( {u_2}^2 + {v_2}^2 + {w_2}^2 \right ),$$ где $u_i, \ v_i, \ w_i \ \left (i = \overline {1, 2} \right )$ — действительные числа. Полагая
$$u_1 = \frac{px}{\sqrt{qy+rz}}, \ v_1 = \frac{qy}{\sqrt{px+rz}}, \ w_1 = \frac{rz}{\sqrt{px+qy}},\\
u_2 = \sqrt{qy+rz}, \ v_2 = \sqrt{px+rz}, \ w_2 = \sqrt{px+qy},$$ будем иметь неравенство
$$
\begin{multline}\left (px + qy + rz \right )^2 \leqslant \left ( \frac{p^2x^2}{qy + rz} + \frac{q^2y^2}{px + rz} + \frac{r^2z^2}{pz + qy} \right ) \times \\ \times 2 \left (px + qy + rz \right ),\end{multline}$$ из которого следует, что
$$\frac{p^2x^2}{qy + rz} + \frac{q^2y^2}{px + rz} + \frac{r^2z^2}{pz + qy} \geqslant \frac{1}{2} \left (px + qy + rz \right ).$$ Так как $p + q + r = 1$, то для оценки суммы $px + qy + rz$ снизу можно применить неравенство леммы 3:
$$px + qy + rz \geqslant x^p y^q z^r = 1.$$ Неравенство задачи доказано.

Замечание 1. Полагая в неравенстве $\eqref{eq:m1710_third}$ $q_1 = \ldots = q_n=\frac{1}{n}$, получим
$$\sqrt[n]{a_1 a_2 \ldots a_n} \leqslant \frac{a_1 + a_2 + \ldots + a_n}{n}.$$ Из неравенства $\eqref{eq:m1710_third}$ нетрудно вывести также и некоторые другие классические утверждения. Например, легко получить так называемое неравенство Коши — Гёльдера:
$$\left \{ \sum\limits_{i=1}^n a_i b_i \right \} \leqslant \left \{ \sum\limits_{i=1}^n a_i ^k \right \} ^ \frac{1}{k} \cdot \left \{ \sum\limits_{i=1}^n b_i ^{{k}’} \right \} ^ \frac{1}{{k}’}$$ (где $a_i, \ b_i \gt 0, \ k, \ {k}’ \gt 1, \ \frac{1}{k} + \frac{1}{{k}’} = 1$), а также неравенство, носящее имя Минковского:
$$\left \{ \sum\limits_{i=1}^n \left ( a_i + b_i \right ) ^k \right \} ^ \frac{1}{k} \leqslant \left \{ \sum\limits_{i=1}^n a_i ^k \right \} ^ \frac{1}{k} + \left \{ \sum\limits_{i=1}^n b_i ^k \right \} ^ \frac{1}{k}$$ (где $a_i, \ b_i \gt 0, \ k \gt 1$).

Замечание 2. Положим в неравенстве задачи $p = q = r = \frac{1}{3}:$
$$\frac{x^2}{y + z} + \frac{y^2}{z + x} + \frac{z^2}{x + y} \geqslant \frac{3}{2}.$$ Теперь положим $a = \frac{1}{x}, \ b = \frac{1}{y}, \ c = \frac{1}{z}.$ Получим:
$$\frac{1}{a^3 \left (b + c \right )} + \frac{1}{b^3 \left (c + a \right )} + \frac{1}{c^3 \left (a + b \right )} \geqslant \frac{3}{2},$$ где $a \gt 0, \ b \gt 0, \ c \gt 0, \ abc = 1.$

Эта задача предлагалась в 1995 году на Международной математической олимпиаде (см. задачу М1526).

С.Калинин, В.Сендеров