Координаты проекций вектора на оси координат и координатные плоскости

Пусть заданы точки $B_1\left(\alpha_1, \beta_1, \gamma_1\right)$ и $B_2\left(\alpha_2, \beta_2, \gamma_2\right),$ также определяющие вектор $\overline{B_1B_2}.$

Определение. Проекцией вектора $\overline{B_1B_2}$ называется вектор, полученный проектированием точек $B_1$ и $B_2$ на какую либо ось или плоскость.

Наша задача заключается в нахождении координат этой проекции. Прежде всего необходимо выяснить способ нахождения координат проекций точки. Например, спроектировав точку $B_1\left(\alpha_1, \beta_1, \gamma_1\right)$ на ось абсцисс, получим $B_{1x}\left(\alpha_1, 0, 0\right).$ Точно таким же образом получаем и точку $B_{2x}\left(\alpha_2, 0, 0\right):$

Понятно, что в случае плоскости проекция точки будет иметь две ненулевые координаты: $B_{1xy}\left(\alpha_1, \beta_1, 0\right)$ и $B_{2xy}\left(\alpha_2, \beta_2, 0\right).$ Для всех остальных плоскостей и осей аналогично. Теперь нам достаточно лишь воспользоваться формулой для вычисления координат вектора: $\overline{B_{1x}B_{2x}} = \left(\alpha_2 -\alpha_1, 0, 0\right),$ а, например, $\overline{B_{1xy}B_{2xy}} = \left(\alpha_2 -\alpha_1, \beta_2 -\beta_1, 0\right).$

Для двумерного пространства разница будет заключаться лишь в том, что точки $B_1\left(\alpha_1, \beta_1\right)$ и $B_2\left(\alpha_2, \beta_2\right)$ определяются двумя координатами. Рассуждения же остаются аналогичными.

Пример

Даны точки $A\left(-3, 2, 5\right)$ и $B\left(6, -3, -1\right),$ определяющие соответствующий вектор $\overline{AB}.$ Найти координаты проекций этого вектора на все координатные плоскости.

Решение

Вначале найдем проекции точек $A$ и $B$ на координатные плоскости. Например, на плоскости $xy$ точки имеют следующие координаты: $A_{xy}\left(-3, 2, 0\right),$ $B_{xy}\left(6, -3, 0\right).$

Аналогично для остальных плоскостей: $A_{yz}\left(0, 2, 5\right),$ $B_{yz}\left(0, -3, -1\right),$ $A_{xz}\left(-3, 0, 5\right),$ $B_{xz}\left(6, 0, -1\right).$ Теперь можно найти координаты проекций вектора $\overline{AB}:$ $$\overline{A_{xy}B_{xy}} = \left(6+3, -3-2, 0-0\right) = \left(9, -5, 0\right),$$ $$\overline{A_{yz}B_{yz}} = \left(0-0, -3-2, -1-5\right) = \left(0, -5, -6\right),$$ $$\overline{A_{xz}B_{xz}} = \left(6+3, 0-0, -1-5\right) = \left(9, 0, -6\right).$$

[свернуть]

Смотрите также

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1994, Глава 3, $§$ 25, «Некоторые задачи» (стр. 79-80)
  2. Виноградов И.М. Аналитическая геометрия. М.: Наука, 1986, Глава 6, $§$ 7 «Выражение проекций вектора через координаты конца и начала» (стр. 136-137)
  3. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М.: ФИЗМАТЛИТ, 2004, $§$ 3, пункт 1, «Понятие направленного отрезка в пространстве. Проекция направленного отрезка на ось» (стр. 17)

Соответствие между действиями над операторами и действиями над их матрицами

Как известно, для любого линейного оператора можно определить матрицу этого оператора, при чем такая матрица будет единственной для заданной пары базисов (или одного базиса, в случае оператора из $\Omega \left(X\right)$, где $\left(X,\:P\right)$ — линейное пространство). Тогда, действия над линейным операторами можно свести к операциям над их матрицами, заданными в фиксированных базисах.

Лемма. В фиксированных базисах, матрицей суммы операторов будет сумма матриц этих операторов.

Зададим два линейных пространства над одним и тем же полем $\left(X,\:P\right)$ и $\left(Y,\:P\right)$ и укажем их размерности, $\dim{X} = m$, $\dim{Y} = n$. В пространстве $X$ зададим базис $\left \langle e \right \rangle = \left \langle e_{1},\: e_{2},\: \cdots,\: e_{m}\right \rangle,$ а в пространстве $Y$ — $\left \langle g \right \rangle = \left \langle g_{1},\: g_{2},\: \cdots,\: g_{n}\right \rangle.$

Зададим линейный оператор $A\in\Omega \left(X,\:Y\right)$. Для оператора $A$ можем записать систему:$$\left\{\begin{matrix} Ae_{1}& = & a_{11}g_{1} & + & a_{21}g_{2} & + & \cdots & + & a_{n1}g_{n},\\ Ae_{2}& = & a_{12}g_{2} & + & a_{22}g_{2} & + & \cdots & + & a_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ae_{m}& = & a_{1m}g_{1} & + & a_{2m}g_{2} & + & \cdots & + & a_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ae_{j} =\sum_{i=1}^{n}a_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $A$ будет иметь вид: $$A_{ge} = \left(\begin{matrix}a_{11} & a_{12} & \cdots & a_{1m}\\a_{21} & a_{22} & \cdots & a_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ a_{n1} & a_{n2} & \cdots & a_{nm}\end{matrix}\right).$$

Аналогично, зададим линейный оператор $B\in\Omega \left(X,\: Y\right)$. Для него можем записать систему:$$\left\{\begin{matrix} Be_{1}& = & b_{11}g_{1} & + & b_{21}g_{2} & + & \cdots & + & b_{n1}g_{n},\\ Be_{2}& = & b_{12}g_{2} & + & b_{22}g_{2} & + & \cdots & + & b_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Be_{m}& = & b_{1m}g_{1} & + & b_{2m}g_{2} & + & \cdots & + & b_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Be_{j} =\sum_{i=1}^{n}b_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $B$ будет иметь вид: $$B_{ge} = \left(\begin{matrix}b_{11} & b_{12} & \cdots & b_{1m}\\b_{21} & b_{22} & \cdots & b_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ b_{n1} & b_{n2} & \cdots & b_{nm}\end{matrix}\right).$$

Определим линейный оператор $C = A + B,\:$ где $C\in\Omega \left(X,\: Y\right).$ Для оператора $C$ можем записать систему:$$\left\{\begin{matrix} Ce_{1}& = & c_{11}g_{1} & + & c_{21}g_{2} & + & \cdots & + & c_{n1}g_{n},\\ Ce_{2}& = & c_{12}g_{2} & + & c_{22}g_{2} & + & \cdots & + & c_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ce_{m}& = & c_{1m}g_{1} & + & c_{2m}g_{2} & + & \cdots & + & c_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ce_{j} =\sum_{i=1}^{n}c_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $C$ будет иметь вид: $$C_{ge} = \left(\begin{matrix}c_{11} & c_{12} & \cdots & c_{1m}\\c_{21} & c_{22} & \cdots & c_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ c_{n1} & c_{n2} & \cdots & c_{nm}\end{matrix}\right).$$

Рассмотрим подробнее равенство. $$\sum_{i=1}^{n}c_{ij}g_{i} = Ce_{j} =$$ (по определению оператора суммы) $$= \left(A + B\right)e_{j} = Ae_{j} + Be_{j} =$$ (используя равенства для $Ae_{j}$ и для $Be_{j}$)$$=\sum_{i=1}^{n}a_{ij}g_{i} + \sum_{i=1}^{n}b_{ij}g_{i} = \sum_{i=1}^{n}\left(a_{ij}+b_{ij}\right)g_{i}.$$Следовательно, $$\sum_{i=1}^{n}c_{ij}g_{i} = \sum_{i=1}^{n}\left(a_{ij}+b_{ij}\right)g_{i}.$$

Таким образом, каждый элемент матрицы $C_{ge}$ представляет собой сумму соответствующих элементов матриц $A_{ge}$ и $B_{ge}$, что и означает, что $C_{ge} = A_{ge} + B_{ge}.$

Лемма. В фиксированных базисах, матрицей произведения оператора на число будет матрица этого оператора, умноженная на это число.

Зададим два линейных пространства над одним и тем же полем $\left(X,\:P\right)$ и $\left(Y,\:P\right)$ и укажем их размерности, $\dim{X} = m$, $\dim{Y} = n$. В пространстве $X$ зададим базис $\left \langle e \right \rangle = \left \langle e_{1},\: e_{2},\: \cdots,\: e_{m}\right \rangle,$ а в пространстве $Y$ — $\left \langle g \right \rangle = \left \langle g_{1},\: g_{2},\: \cdots,\: g_{n}\right \rangle.$

Зададим линейный оператор $A\in\Omega \left(X,\: Y\right)$. Для оператора $A$ можем записать систему:$$\left\{\begin{matrix} Ae_{1}& = & a_{11}g_{1} & + & a_{21}g_{2} & + & \cdots & + & a_{n1}g_{n},\\ Ae_{2}& = & a_{12}g_{2} & + & a_{22}g_{2} & + & \cdots & + & a_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ae_{m}& = & a_{1m}g_{1} & + & a_{2m}g_{2} & + & \cdots & + & a_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ae_{j} =\sum_{i=1}^{n}a_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $A$ будет иметь вид: $$A_{ge} = \left(\begin{matrix}a_{11} & a_{12} & \cdots & a_{1m}\\a_{21} & a_{22} & \cdots & a_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ a_{n1} & a_{n2} & \cdots & a_{nm}\end{matrix}\right).$$

Определим линейный оператор $ C = \lambda A,$ где $C\in\Omega \left(X,\:Y\right)$, $\:\forall \lambda \in P$. Для оператора $C$ можем записать систему:$$\left\{\begin{matrix} Ce_{1}& = & c_{11}g_{1} & + & c_{21}g_{2} & + & \cdots & + & c_{n1}g_{n},\\ Ce_{2}& = & c_{12}g_{2} & + & c_{22}g_{2} & + & \cdots & + & c_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ce_{m}& = & c_{1m}g_{1} & + & c_{2m}g_{2} & + & \cdots & + & c_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ce_{j} =\sum_{i=1}^{n}c_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $C$ будет иметь вид: $$C_{ge} = \left(\begin{matrix}c_{11} & c_{12} & \cdots & c_{1m}\\c_{21} & c_{22} & \cdots & c_{2m}\\ \cdot& \cdot& \cdot& \cdot \\ c_{n1} & c_{n2} & \cdots & c_{nm}\end{matrix}\right).$$

Рассмотрим подробнее равенство. $$\sum_{i=1}^{n}c_{ij}g_{i} = Ce_{j} =$$ (по определению произведения оператора на число) $$= \left(\lambda A\right)e_{j} = \lambda \left(Ae_{j}\right)=$$ (используя равенство для $Ae_{j}$)$$=\lambda\sum_{i=1}^{n}a_{ij}g_{i} = \sum_{i=1}^{n}\lambda a_{ij}g_{i}.$$Следовательно, $$\sum_{i=1}^{n}c_{ij}g_{i} = \sum_{i=1}^{n}\lambda a_{ij}g_{i}.$$

Таким образом, каждый элемент матрицы $C_{ge}$ представляет собой произведение числа $\lambda$ на соответствующий элемент матрицы $A_{ge}$, что и означает, что $C_{ge} = \lambda A_{ge}.$

Лемма. В фиксированных базисах, матрицей произведения операторов будет произведение матриц этих операторов.

Зададим три линейных пространства над одним и тем же полем $\left(X,\:P\right)$, $\left(Y,\:P\right)$ и $\left(Z,\:P\right)$ и укажем их размерности, $\dim{X} = m,$ $\dim{Y} = n,$ $\dim{Z} = k$. В пространстве $X$ зададим базис $\left \langle e \right \rangle = \left \langle e_{1},\: e_{2},\: \cdots,\: e_{m}\right \rangle,$ в пространстве $Y$ — $\left \langle g \right \rangle = \left \langle g_{1},\: g_{2},\: \cdots,\: g_{n}\right \rangle,$ а в пространстве $Z$ — $\left \langle t \right \rangle = \left \langle t_{1},\: t_{2},\: \cdots,\: t_{k}\right \rangle.$

Зададим линейный оператор $A\in\Omega \left(X,\: Y\right)$. Для оператора $A$ можем записать систему:$$\left\{\begin{matrix} Ae_{1}& = & a_{11}g_{1} & + & a_{21}g_{2} & + & \cdots & + & a_{n1}g_{n},\\ Ae_{2}& = & a_{12}g_{2} & + & a_{22}g_{2} & + & \cdots & + & a_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ae_{m}& = & a_{1m}g_{1} & + & a_{2m}g_{2} & + & \cdots & + & a_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ae_{j} =\sum_{i=1}^{n}a_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $A$ будет иметь вид: $$A_{ge} = \left(\begin{matrix}a_{11} & a_{12} & \cdots & a_{1m}\\a_{21} & a_{22} & \cdots & a_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ a_{n1} & a_{n2} & \cdots & a_{nm}\end{matrix}\right).$$

Аналогично, зададим линейный оператор $B\in\Omega \left(Y,\:Z\right)$. Для него можем записать систему:$$\left\{\begin{matrix} Bg_{1}& = & b_{11}t_{1} & + & b_{21}t_{2} & + & \cdots & + & b_{k1}t_{k},\\ Bg_{2}& = & b_{12}t_{2} & + & b_{22}t_{2} & + & \cdots & + & b_{k2}t_{k},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Bg_{n}& = & b_{1n}t_{1} & + & b_{2n}t_{2} & + & \cdots & + & b_{kn}t_{k}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Bg_{i} =\sum_{f=1}^{k}b_{fi}t_{f},$$ где $i = \overline{1,\:n}$. Тогда, в базисах $\left \langle g \right \rangle$ и $\left \langle t \right \rangle$ матрица оператора $B$ будет иметь вид: $$B_{tg} = \left(\begin{matrix}b_{11} & b_{12} & \cdots & b_{1n}\\b_{21} & b_{22} & \cdots & b_{2n}\\ \cdot& \cdot& \cdot& \cdot\\ b_{k1} & b_{k2} & \cdots & b_{kn}\end{matrix}\right).$$

Определим линейный оператор $C = BA,$ где $C\in\Omega \left(X,\:Z\right)$. Для оператора $C$ можем записать систему:$$\left\{\begin{matrix} Ce_{1}& = & c_{11}t_{1} & + & c_{21}t_{2} & + & \cdots & + & c_{k1}t_{k},\\ Ce_{2}& = & c_{12}t_{2} & + & c_{22}t_{2} & + & \cdots & + & c_{k2}t_{k},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ce_{m}& = & c_{1m}t_{1} & + & c_{2m}t_{2} & + & \cdots & + & c_{km}t_{k}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ce_{j} =\sum_{d=1}^{k}c_{dj}t_{d},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle t \right \rangle$ матрица оператора $C$ будет иметь вид: $$C_{te} = \left(\begin{matrix}c_{11} & c_{12} & \cdots & c_{1k}\\c_{21} & c_{22} & \cdots & c_{2k}\\ \cdot& \cdot& \cdot& \cdot\\ c_{k1} & c_{k2} & \cdots & c_{km}\end{matrix}\right).$$

Рассмотрим подробнее равенство. $$\sum_{d=1}^{k}c_{dj}t_{d} = Ce_{j} =$$ (по определению произведения операторов) $$= \left(BA\right)e_{j} = B\left(Ae_{j}\right) =$$ (используя равенство для $Ae_{j}$)$$= B\sum_{i=1}^{n}a_{ij}g_{i} = \sum_{i=1}^{n}a_{ij}Bg_{i} = \sum_{i=1}^{n}a_{ij}\left(Bg_{i}\right) =$$ (используя равенство для $Bg_{i}$)$$= \sum_{i=1}^{n} a_{ij} \sum_{f=1}^{k} b_{fi}t_{f} = \sum_{i=1}^{n} \sum_{f=1}^{k} a_{ij}b_{fi}t_{f} =\\=\sum_{f=1}^{k} \sum_{i=1}^{n} b_{fi}a_{ij}t_{f} = \sum_{f=1}^{k} \left(\sum_{i=1}^{n} b_{fi}a_{ij} \right)t_{f}.$$Следовательно, получили равенство: $$\sum_{d=1}^{k}c_{dj}t_{d} =\sum_{f=1}^{k} \left(\sum_{i=1}^{n} b_{fi}a_{ij} \right)t_{f},$$ а так как $d = \overline{1,\:k}$ и $f = \overline{1,\:k}$, то получаем следующее:$$c_{dj} = \sum_{i=1}^{n} b_{di}a_{ij}.$$

Таким образом, каждый элемент матрицы $C_{te}$, с индексами $d$ и $j$ равен сумме попарных произведений каждого элемента $d$-ой строки матрицы $B_{tg}$ на соответствующий элемент $j$-ого столбца матрицы $A_{ge}$. Это и означает, по определению произведения матриц, что $C_{te} = B_{tg}A_{ge}.$

Примеры решения задач

  1. Пусть заданы два линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{2}+x_{3},\:2x_{1}+x_{3},\:3x_{1}-x_{2}+x_{3}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (2x_{1}-x_{2}-x_{3},\:x_{1}-2x_{2}+x_{3},\:x_{1}+x_{2}-2x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:0\right),\:\left(0,\:1,\:0\right),\:\left(0,\:0,\:1\right)\right \rangle.$$Найти матрицу суммы операторов $C = A + B$ в базисе $\left \langle e \right \rangle.$
    Решение

    Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}0 & 1 & 1 \\2 & 0 & 1 \\3 & -1 & 1\end{array}\right)\cdot$$

    Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}2 & -1 & -1 \\1 & -2 & 1 \\1 & 1 & -2\end{array}\right)\cdot$$

    Найдем матрицу оператора $C = A + B.$ По лемме матрица оператора $C$ в базисе $\left \langle e \right \rangle$ описывается равенством: $C_{e} = A_{e} + B_{e}$, тогда имеем:$$C_{e} = \left(\begin{array}{rrr}0 & 1 & 1 \\2 & 0 & 1 \\3 & -1 & 1\end{array}\right) + \left(\begin{array}{rrr}2 & -1 & -1 \\1 & -2 & 1 \\1 & 1 & -2\end{array}\right) = \left(\begin{array}{rrr}2 & 0 & 0 \\3 & -2 & 2 \\4 & 0 & -1\end{array}\right)\cdot$$

    [свернуть]
  2. Пусть задан оператор дифференцирования $D\in\Omega \left ( \mathbb{R}_{4}[x] \right )$. Найти матрицу оператора $F = \sqrt{2}D$ $\left( F\in\Omega \left ( \mathbb{R}_{4}[x] \right) \right)$ в базисе $\left \langle e \right \rangle = \left \langle 1,\:\displaystyle x,\:\displaystyle x^{2},\:\displaystyle x^{3},\:\displaystyle x^{4}\right \rangle.$
    Решение

    Найдем матрицу оператора $D$ в базисе $\left \langle e \right \rangle.$$$D_{e} = \left(\begin{matrix}0 & 1 & 0 & 0 & 0\\0 & 0 & 2 & 0 & 0\\0 & 0 & 0 & 3 & 0\\0 & 0 & 0 & 0 & 4\\0 & 0 & 0 & 0 & 0\end{matrix}\right)\cdot$$

    Найдем матрицу оператора $F = \sqrt{2}D$. По лемме матрица оператора $F$ в базисе $\left \langle e \right \rangle$ описывается равенством: $F_{e} = \sqrt{2}D_{e}$, тогда имеем:$$F_{e} = \sqrt{2}\left(\begin{matrix}0 & 1 & 0 & 0 & 0\\0 & 0 & 2 & 0 & 0\\0 & 0 & 0 & 3 & 0\\0 & 0 & 0 & 0 & 4\\0 & 0 & 0 & 0 & 0\end{matrix}\right) = \left(\begin{matrix}0 & \sqrt{2} & 0 & 0 & 0\\0 & 0 & 2\sqrt{2} & 0 & 0\\0 & 0 & 0 & 3\sqrt{2} & 0\\0 & 0 & 0 & 0 & 4\sqrt{2}\\0 & 0 & 0 & 0 & 0\end{matrix}\right)\cdot$$

    [свернуть]
  3. Пусть заданы два линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{1}-x_{2}+x_{3},\:x_{3},\:x_{2}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (2x_{1}+3x_{2},\:x_{1},\:x_{2}-x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:1\right),\:\left(2,\:0,\:-1\right),\:\left(1,\:1,\:0\right)\right \rangle.$$Найти матрицу произведения операторов $C = BA$ в базисе $\left \langle e \right \rangle.$
    Решение

    Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}2 & 1 & 0 \\1 & -1 & 0 \\0 & 0 & 1\end{array}\right)\cdot$$

    Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}2 & 1 & 5 \\1 & 2 & 1 \\-1 & 1 & 1\end{array}\right)\cdot$$

    Найдем матрицу оператора $C = BA.$ По лемме матрица оператора $C$ в базисе $\left \langle e \right \rangle$ описывается равенством: $C_{e} = B_{e}A_{e}$, тогда имеем:$$C_{e} = \left(\begin{array}{rrr}2 & 1 & 5 \\1 & 2 & 1 \\-1 & 1 & 1\end{array}\right)\left(\begin{array}{rrr}2 & 1 & 0 \\1 & -1 & 0 \\0 & 0 & 1\end{array}\right) = \left(\begin{array}{rrr}5 & 1 & 5 \\4 & -1 & 1 \\-1 & -2 & 1\end{array}\right)\cdot$$

    [свернуть]
  4. Пусть заданы два линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(2x_{1}-x_{2},\:3x_{1}+x_{3},\:2x_{2}-2x_{3}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (x_{1}+x_{3},\:x_{2}-x_{1},\:3x_{2}+x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:0\right),\:\left(0,\:1,\:0\right),\:\left(0,\:0,\:1\right)\right \rangle.$$Найти матрицу оператора $C = 2BA + 3A$ в базисе $\left \langle e \right \rangle.$
    Решение

    Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}2 & -1 & 0 \\3 & 0 & 1 \\0 & 2 & -2\end{array}\right)\cdot$$

    Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}1 & 0 & 1 \\-1 & 1 & 0 \\0 & 3 & 1\end{array}\right)\cdot$$

    Найдем матрицу оператора $D = BA.$ По лемме матрица оператора $D$ в базисе $\left \langle e \right \rangle$ описывается равенством: $D_{e} = B_{e}A_{e}$, тогда имеем:$$D_{e} = \left(\begin{array}{rrr}1 & 0 & 1 \\-1 & 1 & 0 \\0 & 3 & 1\end{array}\right)\left(\begin{array}{rrr}2 & -1 & 0 \\3 & 0 & 1 \\0 & 2 & -2\end{array}\right) = \left(\begin{array}{rrr}2 & 1 & -2 \\1 & 1 & 1 \\9 & 2 & 1\end{array}\right)\cdot$$

    Найдем матрицу оператора $F = 2D.$ По лемме матрица оператора $F$ в базисе $\left \langle e \right \rangle$ описывается равенством: $F_{e} = 2D_{e}$, тогда имеем:$$F_{e} = 2\left(\begin{array}{rrr}2 & 1 & -2 \\1 & 1 & 1 \\9 & 2 & 1\end{array}\right) = \left(\begin{array}{rrr}4 & 2 & -4 \\2 & 2 & 2 \\18 & 4 & 2\end{array}\right)\cdot$$

    Найдем матрицу оператора $G = 3A.$ По лемме матрица оператора $G$ в базисе $\left \langle e \right \rangle$ описывается равенством: $G_{e} = 3A_{e}$, тогда имеем:$$G_{e} = 3\left(\begin{array}{rrr}2 & -1 & 0 \\3 & 0 & 1 \\0 & 2 & -2\end{array}\right) = \left(\begin{array}{rrr}6 & -3 & 0 \\9 & 0 & 3 \\0 & 6 & -6\end{array}\right)\cdot$$

    Тогда, по лемме матрица оператора $C$ определяется равенством: $C_{e} = F_{e} + G_{e},$ получим:$$C_{e} = \left(\begin{array}{rrr}4 & 2 & -4 \\2 & 2 & 2 \\18 & 4 & 2\end{array}\right) + \left(\begin{array}{rrr}6 & -3 & 0 \\9 & 0 & 3 \\0 & 6 & -6\end{array}\right) = \left(\begin{array}{rrr}10 & -1 & -4 \\11 & 2 & 5 \\18 & 10 & -4\end{array}\right)\cdot$$

    [свернуть]
  5. Пусть заданы три линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{1}+x_{2}+x_{3},\:2x_{1}-x_{2},\:3x_{2}+x_{3}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (2x_{2}-3x_{3},\:x_{1}+x_{3},\:2x_{1}-3x_{2}\right ),$$$$C\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{1},\:x_{2}-4x_{3},\:2x_{1}+6x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:1\right),\:\left(1,\:1,\:0\right),\:\left(0,\:1,\:1\right)\right \rangle.$$Найти матрицу оператора $D = A^{2} — 5B + 6C$ в базисе $\left \langle e \right \rangle.$
    Решение

    Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}2 & 2 & 2 \\2 & 1 & -1 \\1 & 3 & 4\end{array}\right)\cdot$$

    Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}-3 & 2 & -1 \\2 & 1 & 1 \\2 & -1 & -3\end{array}\right)\cdot$$

    Найдем матрицу оператора $C$ в базисе $\left \langle e \right \rangle.$$$C_{e} = \left(\begin{array}{rrr}1 & 1 & 0 \\-4 & 1 & -3 \\8 & 2 & 6\end{array}\right)\cdot$$

    Найдем матрицу оператора $F = A^{2}.$ Матрица оператора $F$ в базисе $\left \langle e \right \rangle$ описывается равенством: $F_{e} = A_{e}A_{e}$, тогда имеем:$$F_{e} = \left(\begin{array}{rrr}2 & 2 & 2 \\2 & 1 & -1 \\1 & 3 & 4\end{array}\right)\left(\begin{array}{rrr}2 & 2 & 2 \\2 & 1 & -1 \\1 & 3 & 4\end{array}\right) = \left(\begin{array}{rrr}10 & 12 & 10 \\5 & 2 & -1 \\12 & 17 & 15\end{array}\right)\cdot$$

    Найдем матрицу оператора $G = -5B.$ По лемме матрица оператора $G$ в базисе $\left \langle e \right \rangle$ описывается равенством: $G_{e} = -5B_{e}$, тогда имеем:$$G_{e} = -5\left(\begin{array}{rrr}-3 & 2 & -1 \\2 & 1 & 1 \\2 & -1 & -3\end{array}\right) = \left(\begin{array}{rrr}15 & -10 & 5 \\-10 & -5 & -5 \\-10 & 5 & 15\end{array}\right)\cdot$$

    Найдем матрицу оператора $H = 6C.$ По лемме матрица оператора $H$ в базисе $\left \langle e \right \rangle$ описывается равенством: $H_{e} = 6C_{e}$, тогда имеем:$$H_{e} = 6\left(\begin{array}{rrr}1 & 1 & 0 \\-4 & 1 & -3 \\8 & 2 & 6\end{array}\right) = \left(\begin{array}{rrr}6 & 6 & 0 \\-24 & 6 & -18 \\48 & 12 & 36\end{array}\right)\cdot$$

    Тогда, по лемме матрица оператора $D$ определяется равенством: $D_{e} = F_{e} + G_{e} + H_{e},$ получим:$$D_{e} = \left(\begin{array}{rrr}10 & 12 & 10 \\5 & 2 & -1 \\12 & 17 & 15\end{array}\right) + \left(\begin{array}{rrr}15 & -10 & 5 \\-10 & -5 & -5 \\-10 & 5 & 15\end{array}\right) + \left(\begin{array}{rrr}6 & 6 & 0 \\-24 & 6 & -18 \\48 & 12 & 36\end{array}\right)=$$$$=\displaystyle\left(\begin{array}{rrr}31 & 8 & 15 \\-29 & 3 & -24 \\50 & 34 & 66\end{array}\right)\cdot$$

    [свернуть]

Соответствие между действиями над операторами и действиями над их матрицами

Тест на знание темы «Соответствие между действиями над операторами и действиями над их матрицами».

Смотрите также

  1. Воеводин В.В. Линейная алгебра 400 стр. М.: Наука, 1980, cтр. 194-196
  2. Личный конспект, составленный на основе лекций Белозерова Г.С.
  3. Проскуряков И.В. Сборник задач по линейной алгебре. 384 стр. М.: Наука, 1984, стр. 189-190

Теорема о ранге матрицы

Теорема. Рангу матрицы соответствует наибольший порядок минора, не равный нулю.

Дана матрица $A= \|a_{ij}\| \in M_{m \times n}\left(P\right).$ Пусть максимально возможный порядок ненулевого минора равен $p.$ Следовательно, имеется хотя бы один минор $M,$ отличный от нуля, с порядком $p.$

Допустим, для удобства доказательства, минор $M$ находится в левой верхнем углу матрицы: $$\left(\begin{matrix}
a_{11} & \cdots & a_{1p} & a_{1p+1} & \cdots & a_{1n}\\
a_{21} & \cdots & a_{2p} & a_{2p+1} & \cdots & a_{2n}\\
\dots& \dots& \dots& \dots & \dots & \dots\\
a_{p1} & \cdots & a_{pp} & a_{pp+1} & \cdots & a_{pn}\\
a_{p+11} & \cdots & a_{p+1p} & a_{p+1p+1} & \cdots & a_{p+1n}\\
\dots& \dots& \dots& \dots &\dots & \dots\\
a_{m1} & \cdots & a_{mp} & a_{mp+1} & \cdots & a_{mn}\\
\end{matrix}\right),
M =
\begin{vmatrix}
a_{11} & \cdots & a_{1p}\\
a_{21} & \cdots & a_{2p}\\
\dots& \dots& \dots\\
a_{p1} & \cdots & a_{pp}\\
\end{vmatrix}.$$

Рассмотрим первые $p$ столбцов матрицы. Если они составляют базу системы столбцов $A,$ тогда утверждение $\mathop{\rm rank} A = p$ справедливо. По определению базы системы векторов (столбцов), эта система должна быть линейно независимой. Предположим, выбранная система линейно зависима, что означает линейную зависимость столбцов минора. Из этого следует, что минор равен нулю по критерию равенства определителя нулю и определению минора. По условию $M \ne 0, $ возникает противоречие. То есть система столбцов линейно независима и, по определению ранга, $\mathop{\rm rank} A = p.$

Теперь докажем, что остальные столбцы матрицы линейно выражаются через первые $p.$ Рассмотрим определитель $p+1$ порядка: $$M’ =
\begin{vmatrix}
a_{11} & \cdots & a_{1p}& a_{1l}\\
a_{21} & \cdots & a_{2p}& a_{2l}\\
\dots& \dots& \dots&\dots\\
a_{p1} & \cdots & a_{pp}& a_{pl}\\
a_{i1} & \cdots & a_{ip}& a_{il}\\
\end{vmatrix}, $$ где $~i=\overline{1,m},~l=\overline{p+1,n}.$

При каком-либо $i$ детерминант равен $0.$ Докажем, что это так. Рассмотрим случай, когда $i=\overline{1,p}.$ Две строки определителя совпадают и тогда по свойству $M’ = 0.$ В случае, когда $i$ лежит между $p+1$ и $m,$ вспомогательный определитель $M’$ является минором матрицы $A$ и имеет порядок $p+1.$ Однако все миноры порядков больших $p$ равны $0,$ что подразумевается непосредственно в формулировке нашей теоремы, следовательно $M’ = 0.$

Можно получить данный минор, воспользовавшись теоремой о разложении определителя по строке. В данном случае разложим по последней. Имеем $$a_{i1}A_{i1}+a_{i2}A_{i2}+\dots+a_{ip}A_{ip}+a_{ij}M = 0,$$ где $A_{i1}, A_{i2}, \dots, A_{ip}$ — алгебраические дополнения соответствующих элементов строки. Примечательно, что алгебраическим дополнением при $a_{ij}$ является $M.$ Далее $$a_{i1} \frac{A_{i1}}{M}+a_{i2}\frac{A_{i2}}{M} +\dots+a_{ip}\frac{A_{ip}}{M}+a_{ij} = 0.$$
$$a_{ij} = \left(-\frac{A_{i1}}{M}\right)a_{i1} +\left(-\frac{A_{i2}}{M}\right)a_{i2} +\dots+\left(-\frac{A_{ip}}{M}\right)a_{ip}.$$ Формально коэффициенты $\left(-\displaystyle\frac{A_{i1}}{M}\right), \dots, \left(-\displaystyle\frac{A_{ip}}{M}\right)$ зависят от номера $i,$ однако вычисляются независимо от него. Это некие константы, найти которые мы можем с помощью первых $p$ столбцов. Изменяя $i$ от $1$ до $p,$ можно получить весь столбец $l$ как линейную комбинацию первых $p$ столбцов. Теорема доказана.

Следствие 1. «Столбцовый» ранг матрицы $A$ совпадает со «строчным».
Чтобы сравнить соответствующие ранги, транспонируем матрицу. Её ранг при этом не изменится, так как в новой матрице значения всех миноров сохранились по свойству определителя транспонированной матрицы. В новой матрице рангом будет ранг строк исходной матрицы, которые стали столбцами после транспонирования. Таким образом, ранги столбцов и строк данной матрицы равны между собой.

Следствие 2. Из равенства нулю определителя матрицы следует, что столбцы матрицы линейно зависимы.
Пусть задана матрица $A = \|a_{ij}\| $ порядка $n$ большего единицы. По условию $\det A = 0,$ значит наибольший порядок отличного от нуля минора меньше $n$ и $\mathop{\rm rank} A < n.$ По свойству ранга система линейно зависима.

Значительно упрощает вычисление ранга метод окаймляющих миноров. Минор является окаймляющим, если содержит в себе минор меньшего порядка. Метод состоит в том, чтобы среди окаймляющих миноров каждого порядка поочередно искать ненулевые миноры. Рассмотрим на примере матрицы $3-$го порядка. Например, для ненулевого минора $\begin{vmatrix}a_{21}\end{vmatrix}$ окаймляющими будут миноры второго порядка $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ и $\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$ Если их значения равны $0,$ ранг матрицы равен $1,$ иначе переходим к следующему порядку. Определитель матрицы — единственный окаймляющий минор третьего порядка. Если он нулевой, ранг равен двум, иначе трём. Получается, мы действуем до тех пор, пока не найдем нулевые миноры или порядок ненулевого минора не совпадает с количеством столбцов(строк) матрицы.

Существует также метод элементарных преобразований, однако его преимущество только в поиске ранга матрицы, более о матрице мы ничего узнать не сможем. Данный метод следует применять на практике при работе с очень большими порядками и ограниченным количеством времени. Его суть в том, чтобы преобразовать матрицу к диагональному виду и узнать её ранг. Так как новая матрица будет эквивалентна данной матрице, её ранг будет рангом исходной матрицы по свойству ранга эквивалентных матриц.

Примеры решения задач

  1. Найти ранг матрицы $A$ методом окаймления миноров $$A = \left(\begin{array}{rrr} -1 & 3 & 2 & -1 & 4 \\ 5 & -4 & -3 &1 & -5 \\ 3 & 2 & 1 & -1 & 3 \end{array} \right).$$
    Решение

    Выберем произвольный ненулевой минор первого порядка, например на пересечении $3$-й строки и $3$-го столбца. Тогда $m_1$(для удобства будем обозначать их так) $= 1 \ne 0.$ Теперь выберем минор второго порядка, окаймляющий $m_1.$ $$m_2 = \left|\begin{array}{rrr} -3 & 1 \\ 1 &-1 \end{array}\right| = 3-1 = 2 \ne 0. $$ Далее перейдем к минору третьего порядка. Вычислим его, разложив по первой строке . $$ m_3 = \left|\begin{array}{rrr} 2 & -1 & 4\\ -3 & 1 & -5 \\ 1 & -1 & 3\end{array}\right| = \left(-1\right)^{1+1} \cdot 2 \cdot \left|\begin{array}{rrr} 1 & -5 \\ -1 & 3 \end{array}\right| + $$ $$ + \left(-1\right)^{1+2} \cdot \left(-1\right) \cdot \left|\begin{array}{rrr} -3 & -5 \\ 1 & 3 \end{array}\right| + \left(-1\right)^{3+1} \cdot 4 \cdot \left|\begin{array}{rrr} -3 & 1 \\ 1 & -1 \end{array}\right| = $$ $$ = 2\left(3-5\right) + \left(-9+5\right) + 4 \left(3-1\right) =-4-4 + 8 = 0. $$ Проверим ещё один окаймляющий минор третьего порядка $$m’_3 = \left|\begin{array}{rrr} 3 & 2 & -1\\ -4 & -3 & 1 \\ 2 & 1 & -1\end{array}\right| = \left(-1\right)^{1+1} \cdot 3 \cdot \left|\begin{array}{rrr} -3 & 1 \\ 1 & -1 \end{array}\right| + $$ $$ + \left(-1\right)^{1+2} \cdot 2 \cdot \left|\begin{array}{rrr} 4 & 1 \\ 2 & -1 \end{array}\right| + \left(-1\right)^{3+1} \cdot -1 \cdot \left|\begin{array}{rrr} 4 & -3 \\ 2 & 1 \end{array}\right| = $$ $$ = 6-4-2 = 0. $$ Оба минора нулевые, то есть $\mathop{\rm rank} A = 2.$

    [свернуть]
  2. Найти ранг матрицы $A+C^2$, где $$A = \left(\begin{array}{rrr} -2 & 4 & 5 \\ 1 & 0 & 0 \\ -3 & 2 & 1 \end{array} \right), C = \left(\begin{array}{rrr} -1 & 0 & 1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right).$$
    Решение

    Найдем матрицу $C^2.$ По определению произведения матриц: $$C^2 = \left(\begin{array}{rrr} -1 & 0 & 1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right) \cdot \left(\begin{array}{rrr} -1 & 0 & 1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right) = \left(\begin{array}{rrr} 2 & 1 & -1 \\ -1 & 2 & 3 \\ 2 & 0 & 3 \end{array}\right).$$ Далее по определению суммы матриц: $$A+C^2 = \left(\begin{array}{rrr} -2 & 4 & 5 \\ 1 & 0 & 0 \\ -3 & 2 & 1 \end{array} \right) + \left(\begin{array}{rrr} 2 & 1 & -1 \\ -1 & 2 & 3 \\ 2 & 0 & 3 \end{array}\right) = \left(\begin{array}{rrr} 0 & 5 & 4 \\ 0 & 2 & 3 \\ -1 & 2 & 4 \end{array}\right).$$ Выберем произвольный ненулевой минор первого порядка, например $m_1 =-1.$ Окаймляющий его минор $$m_2 = \left|\begin{array}{rrr} 0 & 2 \\ -1 & 2 \end{array}\right| = 2 \ne 0.$$ Других окаймляющих второго порядка нет, возьмемся за минор порядка $3.$ $$ m_3 = \left|\begin{array}{rrr} 0 & 5 & 4 \\ 0 & 2 & 3 \\ -1 & 2 & 4\end{array}\right|= \left(-1\right)^{1+2} \cdot 5 \cdot \left|\begin{array}{rrr} 0 & 3 \\ -1 & 4 \end{array}\right| + \left(-1\right)^{3+1} \cdot 4 \cdot \left|\begin{array}{rrr} 0 & 2 \\ -1 & 2 \end{array}\right| = $$$$ =-15 + 8 =-7 \ne 0. $$ Значит $~\mathop{\rm rank} \left(A+C^2\right) = 3.$

    [свернуть]
  3. Дана матрица $$A = \left(\begin{array}{rrr} 3 & -1 & 0 \\ \lambda & 4 & 5 \\ 0 & 8 & -6 \\ 11 & 0 & 7 \\ 2 & 7 & 1 \\ -3 & 1 & -2 \end{array} \right).$$ При каком $\lambda$ ранг матрицы будет равен $1? ~2?$
    Решение

    • Возьмём $m_1 = 3 \ne 0.$ Чтобы ранг матрицы был равен $1,$ необходимо, чтобы миноры второго порядка, окаймляющие выбранный нами, были равны $0.$ Итак: $$m_2 = \left|\begin{array}{rrr} 3 & -1 \\ \lambda & 4 \end{array}\right| = 12 + \lambda = 0 \Rightarrow \lambda =-12. $$
    • Чтобы ранг матрицы был равен $2,$ необходимо, чтобы миноры третьего порядка, окаймляющие выбранный нами, были равны $0.$ Заметим, теперь $\lambda \ne -12.$ $$m_3 = \left|\begin{array}{rrr} 3 & -1 & 0\\ \lambda & 4 & 5 \\ 0 & 8 & 6 \end{array}\right| = \left(-1\right)^{1+1} \cdot 3 \cdot \left|\begin{array}{rrr} 4 & 5 \\ 8 & 6 \end{array}\right| + \left(-1\right)^{2+1} \cdot \left(-1\right) \cdot \left|\begin{array}{rrr} \lambda & 5 \\ 0 & 6 \end{array}\right| = $$ $$ = 3\left(24-40\right) + 6\lambda = 0 \Rightarrow 6\lambda = 48 \Rightarrow \lambda = 8. $$

    [свернуть]
  4. Найти максимально линейно независимую подсистему системы векторов $$\alpha_1 = \left(3,-1,-3 \right), $$ $$\alpha_2 = \left(-7,2,5\right), $$$$ \alpha_3 = \left(5,1,11\right), $$$$ \alpha_4 = \left(1,-4,-23\right). $$
    Решение

    Запишем вектора как столбцы матрицы и найдем её ранг $$ \left(\begin{array}{rrr} 3 & -7 & 5 & 1 \\ -1 & 2 & 1 & -4 \\ -3 & 5 & 11 & -23 \end{array} \right).$$ Миноры $ \left|\begin{array}{rrr} 3 & -7 \\ -1 & 2 \end{array}\right|, \left|\begin{array}{rrr} -1 & 2 \\ -3 & 5 \end{array}\right| $ окаймляют ненулевой $-1.$ Но минор $ \left|\begin{array}{rrr} 3 & -7 & 5\\ -1 & 2 & 1 \\ -3 & 5 & 11 \end{array}\right| = 0$ (можно проверить, разложив по второй строке). Ранг матрицы не превышает $2.$ Таким образом, максимально линейно независимую подсистему образуют вектора $\alpha_1, \alpha_2.$

    [свернуть]
  5. Чему равно значение выражения $$6 \cdot {\mathop{\rm rank}}^2 A + 2 \mathop{\rm rank} A \cdot \mathop{\rm rank} B-13 \cdot {\mathop{\rm rank}}^2 B,$$ где $$ A = \left(\begin{array}{rrr} 1 & -2 & -2 & 5 \\ 3 & 6 & 1 & 15 \\ -4 & 0 & -1 & -12 \\ -7 & 14 & 14 & -35 \\ 10 & 3 & -4 & 50 \end{array} \right), ~ B = \left(\begin{array}{rrr} 12 & 11 & -4 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \end{array} \right)? $$
    Решение

    Начнем с матрицы $A. m_1 = 1, m_2 = 12, $ $$m_3 = \left|\begin{array}{rrr} 1 & -2 & -2 \\ 3 & 6 & 1 \\ -4 & 0 & -1 \end{array}\right| =-6 + 8-48-6 =-52. $$ Минор третьего порядка не равен $0.$ Значит перейдем к $4$-му порядку: $$m_4 = \left|\begin{array}{rrr} 1 & -2 & -2 & 5\\ 3 & 6 & 1 & 15 \\ -4 & 0 & -1 & -12 \\ -7 & 14 & 14 & -35 \end{array}\right| = 0. $$ Нам не пришлось долго вычислять минор, так как первая и четвертая строки пропорциональны, а значит линейно зависимы и детерминант равен $0 \Rightarrow \mathop{\rm rank} A = 3. $

    В матрице $B$ возникает аналогичная ситуация. $m_1, m_2 \ne 0,$ но $m_3$ имеет две линейно зависимой строки, следовательно этот минор нулевой по критерию равенства детерминанта нулю и $\mathop{\rm rank} B = 2.$

    Теперь мы знаем ранги матриц и просто подставляем в выражение: $$6 \cdot 3^2 + 2 \cdot 3 \cdot 2-13 \cdot 2^2 = 54 + 12-52 = 14.$$

    [свернуть]

Теорема о ранге матрицы

Тест на знание темы «Теорема о ранге матрицы».

Смотрите также

  1. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, стр. 71-75
  2. А. И. Кострикин Введение в алгебру М.: Наука, 1994, стр.88-89
  3. К. Д. Фадеев Лекции по алгебре М.: Наука, 1984 стр.113-115
  4. Александров П.С. Курс аналитической геометрии и линейной алгебры — 2009 стр. 346-349
  5. Личный конспект, составленный на основе лекций Белозерова Г.С.

Извлечение корней из комплексных чисел

Корень степени $n$ из комплексного числа

Определение Пусть $z=r\left ( \cos\varphi + i\sin\varphi \right ).$ Тогда корнем степени $n$ из комплексного числа $z$ называется комплексное число $w$, для которого верно равенство $w^n=z.$

Легко заметить, что при $z=0 \Rightarrow w=0.$ Поэтому предположим, что $z \neq 0$
Пусть $w=\rho \left ( \cos\psi + i\sin\psi \right ),$ чему тогда равны $\rho,\:\psi?$

Распишем равенство $w^n=z,\:z=r\left ( \cos\varphi + i\sin\varphi \right )$ $$\left ( \rho \left ( \cos\psi +i\sin\psi \right ) \right )^n=r(\cos\varphi +i\sin\varphi )$$ Воспользуемся формулой Муавра:$$ \rho^n \left ( \cos n \psi +i\sin n \psi \right ) =r(\cos\varphi +i\sin\varphi )$$Из равенства комплексных чисел следует равенство их аргументов и модулей. $$\rho = \sqrt[n]{r}$$ $$\psi =\frac{\varphi }{n}+\frac{2\pi k}{n},\:k=0,1,..,n-1$$ Тогда: $$w_k=\sqrt[n]{r}\left( \cos\left ( \frac{\varphi }{n} +\frac{2\pi k}{n}\right )+i\sin\left ( \frac{\varphi }{n} +\frac{2\pi k}{n}\right )\right )$$ Пришли к зависимости корня от параметра $k$. Рассмотрим лемму.

Лемма. $w_k=w_l\Leftrightarrow \left ( k-l \right )\vdots \,n$

$w_k=w_l$ равные комплексные числа, а значит их аргументы равны $$\frac{\varphi }{n}+\frac{2\pi k}{n}=\frac{\varphi }{n}+\frac{2\pi l}{n}+2\pi t$$ $$ 2\pi \left(k-l \right )=2\pi nt\Leftrightarrow k-l=nt\Leftrightarrow \left(k-l \right )\vdots \: n$$

$W=\left \{ w_0,\:w_1,…,\:w_{n-1} \right \}$ — множество корней степени $n$ из $z$. В силу вышеизложенной леммы все корни попарно различны. Значит мы имеем только n различных значений аргумента, при этом модули корней равны $$\left | \sqrt[n]{z} \right |=\sqrt[n]{\left | z \right |}$$ $$\mathop{\rm Arg}\,\sqrt[n]{z}=\frac{\mathop{\rm Arg}\,z+2\pi k}{n},\,k=\overline{0,\,n-1}$$Общий вид корня степени $n$ $$\sqrt[n]{z}= \left \{ \sqrt[n]{r}\left ( \cos\left ( \frac{\varphi }{n} +\frac{2\pi k}{n} \right ) +i\sin\left ( \frac{\varphi }{n} +\frac{2\pi k}{n}\right ) \right) \right \},$$ где $k\in \mathbb{N},\,k=\overline{0,\,n-1}$

Замечание. $\displaystyle\frac{\varphi }{n}$ называется фазой, $\displaystyle\frac{2\pi k}{n}$ называется сдвигом по фазе.

Следствие. Так как все значения корня имеют одинаковый модуль, то есть одинаковое расстояние от начала координат (равное модулю этих корней), все они вписаны в окружность с центром в начале координат. Множество всех корней степени $n$ из комплексного числа изображается как правильный $n$-угольник.

Квадратный корень из комплексного числа

Извлечь квадратный корень из комплексного числа можно и без перехода к тригонометрической форме. Рассмотрим теорему

Теорема. Если $z = a + bi,\:\left(a^2+b^2\neq 0\right),$ то существует ровно 2 корня

  1. $b = 0,\:a > 0 \Rightarrow w = \pm \sqrt{a}$
  2. $b = 0,\: a < 0 \Rightarrow w = \pm i\sqrt{a}$
  3. $b \neq 0 \Rightarrow w = \pm \left(\sqrt{\displaystyle\frac{\sqrt{a^2+b^2} + a} {2}}+i \, \mathop{\rm sign} \, b \sqrt{\displaystyle\frac{\sqrt{a^2+b^2}-a}{2}}\right)$

Пусть $w=x+yi,$ где $x,\:y\in \mathbb{R}$ $$w^2=z \Rightarrow (x+yi)^2=a+bi$$ $$x^2-y^2+2xyi=a+bi$$ Получили $$x^2-y^2=a$$ $$2xy=b$$ Если $b=0$, тогда или $x=0$, или $y=0$.

  1. $b=0,\:y=0.$ Тогда получим $x^2=a \Rightarrow \: x\pm \sqrt{a}$
  2. $b=0,\:x=0.$ Тогда получим $-y^2=a \Rightarrow a<0.$ Тогда $y^2=-a \Rightarrow y^2=ai^2\Rightarrow y=\pm\sqrt{a}i$
  3. $b \neq 0,\: x \neq 0.$

    Выразим $y$ из равенства $$y=\frac{b}{2x}$$Подставим значение $y$ в равенство, получим: $$x^2-\frac{b^2}{4x^2}=a$$ Домножим обе части равенства на $4x^2$ $$4x^4-4x^2a-b^2=0$$

    Воспользуемся формулой дискриминанта, тогда $$x_{1,2}^{2}=\frac{2a\pm\sqrt{4a^2+4b^2}}{4}=\frac{a\pm\sqrt{a^2+b^2}}{2},\: x_{1,2}^{2}\in \mathbb{R}$$ $$x_{1}^{2}=\frac{a+\sqrt{a^2+b^2}}{2}>0$$ $$x_{2}^{2}=\frac{a-\sqrt{a^2+b^2}}{2}<0,$$так как $x_{2}^{2}\in \mathbb{R} \Rightarrow$ не имеет решений $$x=\pm \sqrt{\frac{a+\sqrt{a^2+b^2}}{2}}$$

    Выразим $y^2$ из равенства $$y^2=\frac{a+\sqrt{a^2+b^2}}{2}-a= \frac{\sqrt{a^2+b^2}-a}{2}$$ Тогда $$y=\pm \sqrt{\frac{\sqrt{a^2+b^2}-a}{2}}$$ Из равенства следует, что $\mathop{\rm sign}\,xy=\mathop{\rm sign}\,b.$ Значит, если $\mathop{\rm sign}\,b>0$ то $\mathop{\rm sign}\,x=\mathop{\rm sign}\,y,$ если же $\mathop{\rm sign}\,b<0$, то $\mathop{\rm sign}\,x=-\mathop{\rm sign}\,y.$ Откуда следует: $$w=\pm \left( \sqrt{\frac{\sqrt{a^2+b^2}+a}{2}}+i\,\mathop{\rm sign}\,b \sqrt{\frac{\sqrt{a^2+b^2}-a}{2}}\right)$$

Примеры решения задач

  1. Найти общий вид корней третьей степени из $z=-\sqrt{3}+i$
    Решение

    Запишем $z$ в тригонометрической форме $$z=2\left ( \cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6} \right )$$Аргументы и модули корней третьей степени будут иметь вид:$$\mathop{\rm Arg}\,\sqrt[3]{z}=\frac{5 \pi }{18}+\frac{2 \pi k }{3},\:k=0,1,2$$ $$\left | \sqrt[3]{z} \right |=\sqrt[3]{2}$$Тогда общий вид корней будет таков $$w_k=\left \{ \sqrt[3]{2}\left ( \cos\left ( \frac{5\pi}{18}+\frac{2\pi k}{3} \right )+i\sin\left ( \frac{5\pi}{18}+\frac{2\pi k}{3} \right ) \right ) \right \},$$ $$k=0,1,2$$

    [свернуть]
  2. Найти значения квадратных корней из $z=3-4i$
    Решение

    $$w_{1,2}=\pm \sqrt[2]{z},\:w=x+iy$$ $$\left | z \right |=\sqrt{a^2+b^2}=\sqrt{3^2+4^2}=\sqrt{25}=5$$
    Ранее мы получили равенства для $x^2$ и $y^2$ . Воспользуемся этими равенствами $$y^2=\frac{1}{2}\left (-3+5 \right )=1$$ $$x^2=\frac{1}{2}\left ( 3+5 \right )=4 $$ Откуда $$x=\pm 2,\:y=\pm 1$$ Значит $$w_{1,2}=\pm \left(2-i\right)$$

    [свернуть]
  3. Решите уравнение $z^2=2i$
    Решение

    $$z=\pm \sqrt{2i}$$Уравнение будет иметь два корня $w_{1,2}$. Найдем их
    $$w_{1,2}=\pm z,\:w=x+iy$$ $$\left | z^2 \right |=\sqrt{a^2+b^2}=\sqrt{0^2+2^2}=\sqrt{4}=2$$
    Ранее мы получили равенства для $x^2$ и $y^2$ . Воспользуемся этими равенствами $$y^2=\frac{1}{2}\left (0+2 \right )=1$$ $$x^2=\frac{1}{2}\left ( 0+2 \right )=1 $$ Откуда $$x=\pm 1,\:y=\pm 1$$ Значит корни уравнения будут равны $$w_{1,2}=\pm \left(1+i\right)$$

    [свернуть]
  4. Будет ли $z_1=\sqrt[4]{2}\left ( \cos \frac{14\pi}{24}+i\sin\frac{14\pi}{24} \right )$ корнем четвертой степени из $z=\sqrt{3}+i$?
    Решение

    Найдем общий вид корней четвертой степени из $z$ и проверим, принадлежит ли $z_1$ множеству корней. Запишем $z$ в тригонометрической форме$$z=2\left ( \cos \frac{\pi}{6}+i\sin\frac{\pi}{6} \right )$$Аргументы и модули корней четвертой степени будут иметь вид: $$\mathop{\rm Arg}\,\sqrt[4]{z}=\frac{ \pi }{24}+\frac{ \pi k }{2},\:k=0,1,2,3$$ $$\left | \sqrt[4]{z} \right |=\sqrt[4]{2}$$ Тогда общий вид корней будет таков $$w_k= \left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{\pi}{24}+\frac{\pi k}{2} \right )+i\sin\left ( \frac{\pi}{24}+\frac{\pi k}{2} \right ) \right ) \right \},$$ $$k=0,1,2,3$$ Корни четвертой степени комплексного числа $z$ равны $$w_0=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{\pi}{24} \right )+i\sin\left ( \frac{\pi}{24} \right ) \right ) \right \}$$ $$w_1=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{13\pi}{24} \right )+i\sin\left ( \frac{13\pi}{24} \right ) \right ) \right \}$$ $$w_2=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{25\pi}{24} \right )+i\sin\left ( \frac{25\pi}{24} \right ) \right ) \right \}$$ $$w_3=\left \{ \sqrt[4]{2}\left ( \cos\left ( \frac{37\pi}{24} \right )+i\sin\left ( \frac{37\pi}{24} \right ) \right ) \right \}$$ $z_1$ не равен какому-либо корню четвертой степени из $z,$ значит он не является корнем четвертой степени из $z$

    [свернуть]

Извлечение корней из комплексных чисел

Тест на знание темы «Извлечение корней из комплексных чисел»

Смотрите также

  1. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, Глава 4, § 19, «Дальнейшее изучение комплексных чисел» (стр. 123-127)
  2. К. Д. Фадеев Лекции по алгебре М.: Наука, 1984, Глава 2, §3, «Обоснование комплексных чисел»(стр. 39-42)
  3. А. И. Кострикин Введение в алгебру М.: Наука, 1994, Глава 5, §1, «Обоснование комплексных чисел»(стр. 202-203)

Алгоритм Евклида

Алгоритм Евклида — это эффективный алгоритм для нахождения НОД. Для натуральных чисел, таких как $9$ и $6,$ достаточно было просто перебирать числа для нахождения НОД. Если же перебирать числа для более сложных примеров, как, например, $52152$ и $9875,$ то процесс нахождение НОД будет слишком долгим. Поэтому, вместо того чтобы перебирать числа, можно просто выполнить ряд простых действий.

Определение. Даны числа $A, B \in \mathbb{Z}^{+},$ где $A \geqslant B$ и $r_{k}, q_{k} \in \mathbb{Z}^{+},$ при $k = 1,2,3…n,$ где $r_k$ — остаток, а $q_{k}$ — частное. Находим ряд равенств: $$A = Bq_{1} + r_{1}$$ $$B = r_{1}q_{2}+r_2$$ $$r_{1} = r_{2}q_{3}+r_{3}$$ $$……$$ $$r_{n-1} = r_{n}q_{n+1}+0,$$ где $r_{n}$ и будет НОД целых чисел $A$ и $B$. Все ранее написанное и называется алгоритмом Евклида.

Другими словами, мы представляем деление $A$ на $B,$ как $A = Bq + r$ и пока остаток $r \neq 0$ мы делим делитель на остаток от деления. А так как остаток всегда меньше делителя двух целых чисел ($r_{1} < B$ или $r_{n} < r_{n-1}$), то рано или поздно остаток будет равен нулю. А НОД двух чисел будет последний делитель.

Выполним те же действия, но на этот раз запишем деление в столбик.


Спойлер

Евклид не открывал этот алгоритм. Этот алгоритм был придуман Аристотелем. Евклид лишь описал этот алгоритм в двух книгах «Начал», а конкретно в VII и X книгах. В первой он описал алгоритм как нахождение НОД двух натуральных чисел, а во второй как нахождение общей меры.

[свернуть]

НОД двух многочленов

Как и с большими целыми числами, алгоритм Евклида очень удобен для поиска НОД двух многочленов.

Теорема. Наибольший общий делитель двух многочленов существует.

Пусть даны два многочлена $f\left(x\right), g\left(x\right) \in P[x],$ где $\deg \left(f\left(x\right)\right) \geqslant \deg \left(g\left(x\right)\right)$. Находим ряд равенств: $$f\left(x\right) = g\left(x\right)q_1\left(x\right)+r_1\left(x\right)$$ $$g\left(x\right) = r_{1}\left(x\right)q_{2}\left(x\right)+r_{2}\left(x\right)$$ $$r_{1}\left(x\right) = r_{2}\left(x\right)q_{3}\left(x\right)+r_{3}\left(x\right)$$ $$……$$ $$r_{n-1}\left(x\right) = r_{n}\left(x\right)q_{n+1}\left(x\right)+0,$$ где $r_{k}, q_{k} \in P[x]$ при $k = 1,2,3,…,n,$ где $r_{k}$ — остаток, а $q_{k}$ — частное. В случае с целыми числами, остатки в алгоритме убывают, при многочленах же убывают степени остатка ($\deg \left(r_{n}\left(x\right)\right) < \deg \left(r_{n-1}\left(x\right)\right) < \deg \left(r_{n-2}\left(x\right)\right) < …$), это означает, что наступит момент деления без остатка. Поэтому НОД двух многочленов, по алгоритму Евклида, будет последний отличный от нуля остаток(в нашем случае $r_{n}$).

В доказательстве мы явно описали принцип работы алгоритма Евклида для нахождения НОД двух многочленов над одним полем.

Запишем тот же алгоритм делением в столбик.

Примеры решения задач

Решим пару простых задач, где используется алгоритм Евклида. Рекомендую решить задания самостоятельно, а потом смотреть решение.

  1. Найти НОД $784$ и $552$ используя алгоритм Евклида.
    Решение

    Для лучшего понимания распишу два деления. Одно в столбик, другое — по определению. Деление в столбик: Деление по определению: $$784 = 552 \times 1 + 232$$ $$552 = 232 \times 2 + 88$$ $$232 = 88 \times 2 + 56$$ $$88 = 56 \times 1 + 32$$ $$56 = 32 \times 1 + 24$$ $$32 = 24 \times 1 + 8$$ $$24 = 8 \times 3 + 0,$$ где число $8$ — НОД $784$ и $552,$ так как это последний делитель.

  2. Найти НОД $868$ и $923$ используя алгоритм Евклида.
    Решение

    Для лучшего понимания распишу два деления. Одно в столбик, другое — по определению. Деление в столбик: Деление по определению: $$923 = 868 \times 1 + 55$$ $$868 = 55 \times 15 + 43$$ $$55 = 43 \times 1 + 12$$ $$43 = 12 \times 3 + 7$$ $$12 = 7 \times 1 + 5$$ $$12 = 7 \times 1 + 5$$ $$7 = 5 \times 1 + 2$$ $$5 = 2 \times 2 + 1$$ $$2 = 1 \times 2 + 0,$$ где число $1$ — НОД $868$ и $923,$ так как это последний делитель.

  3. Найти НОД $52800$ и $54108$ используя алгоритм Евклида.
    Решение

    Для лучшего понимания распишу два деления. Одно в столбик, другое — по определению. Деление в столбик: Деление по определению: $$54108 = 52800 \times 1 + 1308$$ $$52800 = 1308 \times 480 + 480$$ $$1308 = 480 \times 2 + 348$$ $$480 = 348 \times 1 + 132$$ $$348 = 132 \times 2 + 84$$ $$132 = 84 \times 1 + 48$$ $$84 = 48 \times 1 + 36$$ $$48 = 36 \times 1 + 12$$ $$36 = 12 \times 3 + 0,$$ где $12$ — НОД $52800$ и $54108$.

  4. Найти НОД $x^5-10x^3-20x^2-15x-4$ и $x^4-6x^2-8x-3$ используя алгоритм Евклида.
    Решение

    Для лучшего понимания распишу два деления. Одно в столбик, другое — по определению. Деление в столбик: Деление по определению: $$x^5-10x^3-20x^2-15x-4 = x\left(x^4-6x^2-8x-3\right) — 4x^3-12x^2-12x-4$$ $$x^4-6x^2-8x-3 = \left(- 4x^3-12x^2-12x-4\right)\left(- \frac{x}{4}\right) — 3x^3-9x^2x-9x-3$$ $$- 4x^3-12x^2-12x-4 =\left(-3x^3-9x^2x^2-9x-3\right)\left(-\frac{4}{3}\right) + 0,$$ где $3x^3-9x^2-9x-3$ — НОД многочленов $x^5-10x^3-20x^2-15x-4$ и $x^4-6x^2-8x-3,$ так как это последний делитель в алгоритме.

Проверка на освоение материала «Алгоритм Евклида».

Смотрите также

  1. Конспект Г.С.Белозерова. Глава 3 — 15с. — С. 3-5.
  2. Д.К. Фаддеев. Лекции по алгебре: Учебное пособие для вузов. — М.: Наука, 1984. — 416 с. — С. 7-11.
  3. И.М. Виноградов. Основы теории чисел. — Москва, 1952. — 181 с. — С. 8-12.