Сведение кратных интегралов к повторным

Сведение двойного интеграла к повторному

Теорема 1

Пусть:

  1. функция $f(x,y)$ интегрируема в некотором прямоугольнике $\Pi = \{ (x,y): a \leq x \leq b, c \leq y \leq d \};$
  2. для любых $x \in [a,b]$ существует интеграл $\int\limits_c^d f(x,y)\,dy.$

Тогда $\int\limits_c^d f(x,y)\,dy$ — интегрируемая на отрезке $[a,b]$ функция от аргумента $x,$ и справедлива следующая формула:
$$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy.$$

Доказательство

Спойлер

Рассмотрим произвольное разбиение отрезков $[a,b]$ и $[c,d]$ точками $a = x_0 < x_1 < \ldots < x_n = b$ и $c = y_0 < y_1 < \ldots < y_m = d.$ Если $\Delta{x_1}, \ldots , \Delta{x_n}$ и $\Delta{y_1}, \ldots , \Delta{y_m}$ — соответствующие промежутки, образующие разбиения данных отрезков, то $\Pi = \bigcup\limits_{i=1}^n \bigcup\limits_{j=1}^m \Pi_{ij},$ где $\Pi_{ij} = \{(x,y): x \in \Delta{x_i}, y \in \Delta{y_j}\}.$

Положим $M_{ij} = \sup\limits_{(x,y) \in \Pi_{ij}} f(x,y),$ $m_{ij} = \inf\limits_{(x,y) \in \Pi_{ij}} f(x,y).$ Так как по условию теоремы интеграл $\int\limits_c^d f(x,y)\,dy$ существует для любых $x \in [a,b],$ то при $x \in \Delta{x_i}$ справедливы следующие неравенства:
$$m_{ij} \Delta{y_j} \leq \int\limits_{y_{j-1}}^{y_j} f(x,y)\,dy \leq M_{ij} \Delta{y_j}.$$
Суммируя эти неравенства по $j$-му индексу, получаем
$$\sum_{j=1}^m{m_{ij} \Delta{y_j}} \leq \int\limits_c^d f(x,y)\,dy \leq \sum_{j=1}^m{M_{ij} \Delta{y_j}}. \;(1)$$

Введем следующие обозначения:

$F(x) = \int\limits_c^d f(x,y)\,dy,$ $M_i = \sup\limits_{x \in \Delta{x_i}} F(x),$ $m_i = \inf\limits_{x \in \Delta{x_i}} F(x).$

Тогда из $(1)$ следует, что
$$\sum_{j=1}^m{m_{ij} \Delta{y_j}} \leq m_i \leq M_i \leq \sum_{j=1}^m{M_{ij} \Delta{y_j}},$$
$$0 \leq M_i \> — \> m_i \leq \sum_{j=1}^m{(M_{ij} \> — \> m_{ij}) \Delta{y_j}}. \;(2)$$

Умножая неравенство $(2)$ на $\Delta{x_i}$ и вводя суммирование по $i$-му индексу, получаем следующее:

$0 \leq \sum\limits_{i=1}^n{(M_i \> — \> m_i) \Delta{x_i}} \leq$ $\sum\limits_{i=1}^n \sum\limits_{j=1}^m {(M_{ij} \> — \> m_{ij}) \, m(\Pi_{ij})} =$

$= S_T(f, \Pi) \> — \> s_T(f, \Pi) \rightarrow 0$ при $\max\limits_{i = \overline{1,n}} |\Delta{x_i}| \rightarrow 0,$

так как функция $f(x,y)$ интегрируема в прямоугольнике $\Pi.$ Но тогда и $\sum\limits_{i=1}^n{(M_i \> — \> m_i) \Delta{x_i}} \rightarrow 0$ при $\max\limits_{i = \overline{1,n}} |\Delta{x_i}| \rightarrow 0$ и, в силу критерия интегрируемости, функция $F(x)$ интегрируема на отрезке $[a,b],$ а значит, существует повторный интеграл
$$\int\limits_a^b F(x)\,dx = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy.$$

Покажем теперь, что он равен двойному интегралу. Интегрируя неравенства $(1)$, получаем:

$\sum\limits_{j=1}^m m_{ij} \Delta x_i \Delta y_j \leq \int\limits_{x_{i-1}}^{x_i} dx \int\limits_c^d f(x,y)\,dy \leq$ $\sum\limits_{j=1}^m M_{ij} \Delta x_i \Delta y_j.$

Выполнив суммирование по индексу $i,$ получаем неравенство:
$$s_T \leq \int\limits_a^b dx \int\limits_c^d f(x,y) \, dy \leq S_T.$$

Поскольку
$$s_T \leq \iint\limits_{\Pi} f(x,y) \,dx\,dy \leq S_T,$$
а ввиду произвольного выбора разбиения разность $S_T \> — \> s_T$ может быть сделана сколь угодно малой, то
$$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy.$$

Теорема доказана.

[свернуть]

Следствие 1

Пусть:

  1. существует двойной интеграл $\iint\limits_{\Pi} f(x,y)\,dx\,dy;$
  2. для любых $x \in [a,b]$ существует интеграл $\int\limits_c^d f(x,y) \, dy;$
  3. для любых $y \in [c,d]$ существует интеграл $\int\limits_a^b f(x,y) \, dx.$

Тогда справедлива формула

$\iint\limits_{\Pi} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_c^d f(x,y)\,dy =$ $\int\limits_c^d dy \int\limits_a^b f(x,y)\,dx. \; (3)$

Следствие 2

Непрерывность функции $f(x,y)$ в прямоугольнике $\Pi$ влечет выполнимость условий следствия 1, а значит, справедлива формула $(3).$

Если функция $\psi (x)$ интегрируема на отрезке $[a,b],$ то формула $(3)$ остается справедливой при замене функции $f(x,y)$ на $\psi (x) f(x,y).$

Определение 1

Пусть:

  1. $\phi (x)$ и $\psi (x)$ — функции, непрерывные на отрезке $[a,b];$
  2. для любых $x \in (a,b)$ выполняется неравенство $\phi (x) < \psi (x).$

Тогда область (рисунок 1)
$$\Omega = \{(x,y): \phi (x) < y < \psi (x), a < x < b\}$$
будем называть элементарной относительно оси $y.$
Fig_1
Поскольку граница области $\delta \Omega$ состоит из графиков непрерывных функций, то $\Omega$— измеримая по Жордану область.

Теорема 2

Пусть:

  1. $\Omega$ — элементарная область относительно оси $y;$
  2. функция $f(x,y)$ интегрируема на области $\overline{\Omega} = \Omega \cup \delta \Omega;$
  3. для любых $x \in [a,b]$ существует интеграл $\int\limits_{\phi(x)}^{\psi(x)} f(x,y)\,dy.$

Тогда справедлива следующая формула:
$$\iint\limits_{\Omega} f(x,y)\,dx\,dy = \int\limits_a^b dx \int\limits_{\phi(x)}^{\psi(x)} f(x,y)\,dy. \;(4)$$

Доказательство

Спойлер

Положим
$$c = \min_{x \in [a,b]} \phi(x), \; d = \max_{x \in [a,b]} \psi(x).$$
Область $\Omega$ (рисунок 2) лежит в прямоугольнике $\Pi = \{ (x,y): a \leq x \leq b, c \leq y \leq d \}.$
Fig_2
Определим функцию $F(x,y)$ следующим образом:
$$F(x,y) = \left\{\begin{matrix} f(x,y), & (x,y) \in \Omega, \\ 0, & (x,y) \in \Pi \setminus \Omega. \end{matrix}\right. \; (5)$$
Так как функция $(5)$ интегрируема на множествах $\overline{\Omega}$ и $\Pi \setminus \overline{\Omega},$ то существует двойной интеграл $\iint\limits_\Pi F(x,y) \, dx \, dy$ (см. свойство аддитивности интеграла).

Аналогично из существования интегралов $\int\limits_c^{\phi(x)} F(x,y) \, dy,$ $\int\limits_{\phi(x)}^{\psi(x)} F(x,y) \, dy$ и $\int\limits_{\psi(x)}^{d} F(x,y) \, dy$ для любых $x \in [a,b]$ следует, что при любом $x \in [a,b]$ существует интеграл $\int\limits_c^d F(x,y) \, dy.$

Таким образом, выполнены все условия теоремы 1, поэтому имеем равенство
$$\iint\limits_\Pi F(x,y) \,dx \,dy = \int\limits_a^b dx \int\limits_c^d F(x,y) \, dy.$$
Подставляя в него выражение $(5),$ получаем формулу $(4).$ Теорема доказана.

[свернуть]

Пример 1

Вычислить двойной интеграл $\iint\limits_G x^2 \, dx\,dy$ по области $G = \{(x,y): -1 < x < 1, x^2 < y < 2 \}$ (рисунок 3).
Fig_3

Решение

Спойлер

Воспользуемся теоремой 2. Применим формулу $(4),$ принимая во внимание, что $a = -1,$ $b = 1$ и $\phi(x)=x^2,$ $\psi(x)=2:$

$\iint\limits_G x^2\,dx\,dy =$ $\int\limits_{-1}^1 dx \int\limits_{x^2}^2 x^2\,dy =$ $\int\limits_{-1}^1 x^2 (2-x^2)\,dx =$ $2 \left(2 \int\limits_0^1 x^2 \,dx \> -\> \int\limits_0^1 x^4\,dx \right) =$ $2 \left(\frac{2}{3} \> — \> \frac{1}{5} \right) =$ $\frac{14}{15}.$

[свернуть]

Пример 2

Свести к повторному интеграл $\iint\limits_G f(x,y) \, dx \, dy,$ где $G$ — область, ограниченная окружностями $x^2 + y^2 = 4$ и $x^2 -2x + y^2 = 0$ (рисунок 4).
Fig_4

Решение

Спойлер

Ось $y$ разбивает область $G$ на три элементарных относительно оси $y$ области. Поэтому

$\iint\limits_G f(x,y) \, dx \, dy =$ $\int\limits_{-1}^{0} dx \int\limits_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x,y) \,dy +$ $\int\limits_{0}^{1} dx \int\limits_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} f(x,y) \,dy +$ $\int\limits_{0}^{1} dx \int\limits_{-\sqrt{4-x^2}}^{-\sqrt{2x-x^2}} f(x,y) \,dy.$

[свернуть]

Сведение тройного интеграла к повторному

Определение 2

Область $\Omega \in \mathbb{R}^3$ будем называть элементарной относительно оси $z,$ если
$$\Omega = \{(x,y,z): (x,y) \in G \subset \mathbb{R}^2, \phi(x,y) < z < \psi(x,y) \},$$
где $G$ — ограниченная в $\mathbb{R}^2$ область, а функции $\phi(x,y)$ и $\psi(x,y)$ непрерывны на $\overline{G},$ где $\overline{G}$ — замыкание области $G.$

Теорема 3

Если функция $f(x,y,z)$ непрерывна на $\overline{\Omega} = \Omega \cup \delta \Omega,$ где область $\Omega$ элементарна относительно оси $z,$ то справедлива следующая формула:
$$\iiint\limits_\Omega f(x,y,z) \, dx \, dy \, dz = \iint\limits_G dx \,dy \int\limits_{\phi(x,y)}^{\psi(x,y)} f(x,y,z) \, dz. \; (6)$$

Доказательство

Спойлер

Как и в случае двойного интеграла, рассмотрим сначала ситуацию, когда область $\Omega$ представляет собой прямоугольный параллелепипед $\Theta = \{ (x,y,z) : a \le x \le b,$ $c \le y \le d,$ $e \le z \le f\},$ а его проекцией на плоскость $(x,y)$ является прямоугольник $\Pi = \{ (x,y) : a \le x \le b,$ $c \le y \le d\}.$

Рассмотрим произвольное разбиение отрезков $[a,b],$ $[c,d]$ и $[e,f]$ точками $a = x_0 < x_1 < \ldots < x_n = b,$ $c = y_0 < y_1 < \ldots < y_m = d$ и $e = z_0 < z_1 < \ldots < z_l = f.$ Если $\Delta{x_1}, \ldots , \Delta{x_n},$ $\Delta{y_1}, \ldots , \Delta{y_m}$ и $\Delta{z_1}, \ldots , \Delta{z_l}$ — соответствующие промежутки, образующие разбиения данных отрезков, то $\Theta = \bigcup\limits_{i=1}^n \bigcup\limits_{j=1}^m \bigcup\limits_{k=1}^l \Theta_{ijk},$ а $\Pi = \bigcup\limits_{i=1}^n \bigcup\limits_{j=1}^m \Pi_{ij},$ где $\Theta_{ijk} = \{(x,y,z): x \in \Delta{x_i},$ $y \in \Delta{y_j},$ $z \in \Delta{z_k}\},$ $\Pi_{ij} = \{(x,y): x \in \Delta{x_i},$ $y \in \Delta{y_j}\}.$

Положим $M_{ijk} = \sup\limits_{(x,y,z) \in \Theta_{ijk}} f(x,y,z),$ $m_{ijk} = \inf\limits_{(x,y,z) \in \Theta_{ijk}} f(x,y,z).$ Тогда для любых $z \in \Delta z_k$ справедливы следующие неравенства:

$m_{ijk} \Delta{x_i} \Delta{y_j} \leq$ $\iint\limits_{\Pi_{ij}} f(x,y,z)\,dx\,dy \leq$ $M_{ijk} \Delta{x_i} \Delta{y_j}.$

Зафиксируем произвольное $z = \xi_k \in \Delta z_k.$ Суммируя эти неравенства по индексам $i$ и $j,$ получаем

$\sum\limits_{i=1}^n \sum\limits_{j=1}^m {m_{ijk} \Delta{x_i} \Delta{y_j}} \leq$ $\iint\limits_{\Pi} f(x,y,\xi_k)\,dx\,dy \leq$ $\sum\limits_{i=1}^n \sum\limits_{j=1}^m {M_{ijk} \Delta{x_i} \Delta{y_j}}.$

Почленно умножая полученные неравенства на $\Delta{z_k}$ и вводя суммирование по $k$-му индексу, получаем следующее:

$\sum\limits_{i=1}^n \sum\limits_{j=1}^m \sum\limits_{k=1}^l {m_{ijk} \Delta{x_i} \Delta{y_j} \Delta{z_k}} \leq$ $\sum\limits_{k=1}^l \iint\limits_{\Pi} f(x,y,\xi_k)\,dx\,dy\,\Delta{z_k} \leq$ $\sum\limits_{i=1}^n \sum\limits_{j=1}^m \sum\limits_{k=1}^l {M_{ijk} \Delta{x_i} \Delta{y_j} \Delta{z_k}}.$

Крайние члены неравенств представляют собой суммы Дарбу $s_T$ и $S_T$ для интеграла $\iiint\limits_\Theta f(x,y,z) \, dx \, dy \, dz,$ поэтому $s_T, \, S_T \rightarrow \iiint\limits_\Theta f(x,y,z) \, dx \, dy \, dz$ при $\Delta{x_i}, \, \Delta{y_j}, \, \Delta{z_l} \rightarrow 0,$ а значит, к интегралу $\iiint\limits_\Theta f(x,y,z)$ будет стремиться и сама интегральная сумма $\sum\limits_{k=1}^l \iint\limits_{\Pi} f(x,y,\xi_k)\,dx\,dy\,\Delta{z_k}.$ Таким образом, справедлива следующая формула:
$$\iiint\limits_\Theta f(x,y,z) \, dx \, dy \, dz = \iint\limits_\Pi dx \,dy \int\limits_e^f f(x,y,z) \, dz.$$

Для случая же произвольной области $\Omega = \{(x,y,z): (x,y) \in G \subset \mathbb{R}^2, \phi(x,y) < z < \psi(x,y) \}$ достаточно определить функцию $F(x,y,z),$ действующую следующим образом: $$F(x,y) = \left\{\begin{matrix} f(x,y,z), & (x,y,z) \in \Omega, \\ 0, & (x,y,z) \in \Theta \setminus \Omega. \end{matrix}\right. \; (7)$$ где $\Theta$ — прямоугольный параллелепипед, включающий в себя область $\Omega.$ В результате приходим к равенству $$\iiint\limits_\Theta F(x,y,z) \, dx \, dy \, dz = \iint\limits_\Pi dx \,dy \int\limits_e^f F(x,y,z) \, dz,$$ из которого путем подстановки выражения $(7)$ получаем формулу $(6).$

Теорема доказана.

[свернуть]

Пример 3

Вычислить тройной интеграл $\iiint\limits_G z \, dx \, dy \, dz,$ где $G$ — область, ограниченная плоскостями $x + y + z = 1,$ $x = 0,$ $y = 0$ и $z = 0$ (рисунок 5).
Fig_5

Решение

Спойлер

Область $\Omega = \{(x,y,z): 0 < x < 1,$ $0 < y < 1-x,$ $0 < z < 1-x-y\}$ элементарна относительно оси $z.$ Пусть $G$ — область на плоскости $(x,y),$ ограниченная прямыми $x+y=1,$ $x=0$ и $y=0.$ Очевидно, что эта область будет элементарна относительно оси $y.$ Применим теорему 3 и теорему 2:

$\iiint\limits_G z \, dx \, dy \, dz =$ $\iint\limits_G dx\,dy \int\limits_0^{1-x-y} z \,dz =$ $\frac{1}{2} \iint\limits_G (1-x-y)^2 \,dx\,dy=$ $\frac{1}{2} \int\limits_0^1 dx \int\limits_0^{1-x} (y+x-1)^2 \,dy =$ $\frac{1}{6} \int\limits_0^1 (y+x-1)^3 \bigg|_0^{1-x}\,dx =$ $\frac{1}{6} \int\limits_0^1 (1-x)^3 \,dx =$ $-\frac{1}{24} (1-x)^4 \bigg|_0^1 =$ $\frac{1}{24}.$

[свернуть]

Тест

Проверьте свои знания по теме, пройдя этот небольшой тест.

Условия сходимости тригонометрического ряда Фурье в точке. Признак Дини. Следствия

Необходимые понятия

Условие Гёльдера. Будем говорить, что функция $f(x)$ удовлетворяет в точке $x_0$ условия Гёльдера, если существуют односторонние конечные пределы $f(x_0 \pm 0)$ и такие числа $\delta > 0$, $\alpha \in (0,1]$ и $c_0 > 0$, что для всех $t \in (0,\delta)$ выполнены неравенства: $|f(x_0+t)-f(x_0+0)|\leq c_0t^{\alpha }$, $|f(x_0-t)-f(x_0-0)|\leq c_0t^{\alpha }$.

Формула Дирихле. Преобразованной формулой Дирихле называют формулу вида:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)+f(x_0-t))D_n(t)dt \quad (1),$$ где $D_n(t)=\frac{1}{2}+ \cos t + \ldots+ \cos nt = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} (2)$ — ядро Дирихле.

Используя формулы $(1)$ и $(2)$, запишем частичную сумму ряда Фурье в следующем виде:
$$S_n(x_0)= \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}}\sin \left ( n+\frac{1}{2} \right ) t dt$$
$$\Rightarrow \lim\limits_{n \to \infty }S_n(x_0) — \frac{1}{\pi}\int\limits_{0}^{\pi}\frac{f(x_0+t)+f(x_0-t)}{2\sin\frac{t}{2}} \cdot \\ \cdot \sin \left (n+\frac{1}{2} \right )t dt = 0 \quad (3)$$

Для $f \equiv \frac{1}{2}$ формула $(3)$ принимает следующий вид: $$ \lim\limits_{n \to \infty }\frac{1}{\delta}\frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}dt=\frac{1}{2}, 0<\delta <\pi. \quad (4)$$

Сходимость ряда Фурье в точке

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и в точке $x_0$ удовлетворяет условию Гёльдера. Тогда ряд Фурье функции $f(x)$ в точке $x_0$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Если в точке $x_0$ функция $f(x)$ — непрерывна, то в этой точке сумма ряда равна $f(x_0)$.

Доказательство

Так как функция $f(x)$ удовлетворяет в точке $x_0$ условию Гёльдера, то при $\alpha > 0$ и $0 < t$ $ < \delta$ выполнены неравенства (1), (2).

Запишем при заданном $\delta > 0$ равенства $(3)$ и $(4)$. Умножая равенство $(4)$ на $f(x_0+0)+f(x_0-0)$ и вычитая результат из равенства $(3)$, получаем $$ \lim\limits_{n \to \infty} (S_n(x_0) — \frac{f(x_0+0)+f(x_0-0)}{2} — \\ — \frac{1}{\pi}\int\limits_{0}^{\delta}\frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}} \cdot \\ \cdot \sin \left (n + \frac{1}{2} \right )t \, dt ) = 0. \quad (5)$$

Из условия Гёльдера следует, что функция $$\Phi(t)= \frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{2\sin \frac{t}{2}}.$$ абсолютно интегрируема на отрезке $[0,\delta]$. В самом деле, применяя неравенство Гёльдера, получаем, что для функции $\Phi(t)$ справедливо следующее неравенство: $|\Phi(t)| \leq \frac{2c_0t^{\alpha }}{\frac{2}{\pi}t} = \pi c_0t^{\alpha — 1} (6)$, где $\alpha \in (0,1]$.

В силу признака сравнения для несобственных интегралов из неравенства $(6)$ следует, что $\Phi(t)$ абсолютно интергрируема на $[0,\delta].$

В силу леммы Римана $$\lim\limits_{n \to \infty}\int\limits_{0}^{\delta}\Phi(t)\sin \left (n + \frac{1}{2} \right)t\cdot dt = 0 .$$

Из формулы $(5)$ теперь следует, что $$\lim\limits_{n \to \infty}S_n(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2} .$$

[свернуть]

Следствие 1. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ производную, то ее ряд Фурье сходится в этой точке к $f(x_0)$.

Следствие 2. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ имеет в точке $x_0$ обе односторонние производные, то ее ряд Фурье сходится в этой точке к $\frac{f(x_0+0)+f(x_0-0)}{2}.$

Следствие 3. Если $2\pi$-периодическая и абсолютно интегрируема на $[-\pi,\pi]$ функция $f(x)$ удовлетворяет в точках $-\pi$ и $\pi$ условию Гёльдера, то в силу периодичности сумма ряда Фурье в точках $-\pi$ и $\pi$ равна $$\frac{f(\pi-0)+ f(-\pi+0)}{2}.$$

Признак Дини

Определение. Пусть $f(x)$ — $2\pi$-периодическая функция, Точка $x_0$ будет регулярной точкой функции $f(x)$, если

    1) существуют конечные левый и правый пределы $\lim\limits_{x \to x_0+0 }f(x)= \lim\limits_{x \to x_0-0 }f(x)= f(x_0+0)=f(x_0-0),$
    2) $f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$

Теорема. Пусть $f(x)$ — $2\pi$-периодическая абсолютно интегрируема на $[-\pi,\pi]$ функция и точка $x_0 \in \mathbb{R}$ — регулярная точка функции $f(x)$. Пусть функция $f(x)$ удовлетворяет в точке $x_0$ условиям Дини: существуют несобственные интегралы $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t}dt, \\ \int\limits_{0}^{h}\frac{|f(x_0-t)-f(x_0-0)|}{t}dt,$$

тогда ряд Фурье функции $f(x)$ в точке $x_0$ имеет сумму $f(x_0)$, т.е. $$ \lim\limits_{n \to \infty }S_n(x_0)=f(x_0)=\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Доказательство

Для частичной суммы $S_n(x)$ ряда Фурье имеет место интегральное представление $(1)$. И в силу равенства $\frac{2}{\pi }\int\limits_{0}^{\pi }D_n(t) \, dt=1,$
$$ f(x_0)= \frac{1}{\pi }\int\limits_{0}^{\pi }f(x_0+0)+f(x_0-0)D_n(t) \, dt$$

Тогда имеем $$S_n(x_0)-f(x_0) = \frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t) \, dt + $$ $$+\frac{1}{\pi}\int\limits_{0}^{\pi}(f(x_0-t)-f(x_0-0))D_n(t) \, dt. \quad(7)$$

Очевидно, что теорема будет доказана, если докажем, что оба интеграла в формуле $(7)$ имеют пределы при $n \to \infty $ равные $0$. Рассмотрим первый интеграл: $$I_n(x_0)=\int\limits_{0}^{\pi}(f(x_0+t)-f(x_0+0))D_n(t)dt. $$

В точке $x_0$ выполняется условие Дини: сходится несобственный интеграл $$\int\limits_{0}^{h}\frac{|f(x_0+t)-f(x_0+0)|}{t} \, dt .$$

Поэтому для любого $\varepsilon > 0$ существует $\delta \in (0, h)$ такое, что $$\int\limits_{0}^{\delta }\frac{\left | f(x_0+t)-f(x_0+0) \right |}{t}dt < \frac{\varepsilon }{\pi }.$$

По выбранному $\varepsilon > 0$ и $\delta > 0$ интеграл $I_n(x_0)$ представим в виде $I_n(x_0)=A_n(x_0)+B_n(x_0)$, где
$$A_n(x_0)=\int\limits_{0}^{\delta }(f(x_0+t)-f(x_0+0))D_n(t)dt ,$$ $$B_n(x_0)=\int\limits_{\delta}^{\pi }(f(x_0+t)-f(x_0+0))D_n(t)dt .$$

Рассмотрим сначала $A_n(x_0)$. Используя оценку $\left | D_n(t) \right |<\frac{\pi}{2t},$ для любого $t \in (0,\pi)$, получаем, что $$\left | (f(x_0+t)-f(x_0+0))D_n(t) \right | \leq$$ $$\leq \frac{\pi}{2} \cdot \frac{f(x_0+t)-f(x_0+0)}{t}$$

для всех $t \in (0, \delta)$.

Поэтому $$A_n(x_0) \leq \frac{\pi}{2} \int\limits_{0}^{\delta } \frac{|f(x_0+t)-f(x_0+0)|}{t}dt< \frac{\varepsilon }{2}. $$

Перейдем к оценке интеграла $B_n(x_0)$ при $n \to \infty $. Для этого введем функцию $$ \Phi (t)=\left\{\begin{matrix}
\frac{f(x_0+t)-f(x_0+0)}{2\sin \frac{t}{2}}, 0< \delta \leq t \leq \pi, \\ 0, -\pi\leq t< \delta . \end{matrix}\right. $$

$$B_n(x_0)=\int\limits_{-\pi}^{\pi}\Phi (t) \sin \left (n+\frac{1}{2} \right )t\,dt.$$ Получаем, что $\lim\limits_{n \to \infty }B_n(x_0)=0$, а это означает, что для выбранного ранее произвольного $\varepsilon > 0$ существует такое $N$, что для всех $n>N$ выполняется неравенство $|I_n(x_0)|\leq |A_n(x_0)| + |B_n(x_0)| < \varepsilon $, т.е. $$\lim\limits_{n \to \infty }I_n(x_0)=0.$$

Совершенно аналогично доказывается, что и второй интеграл формулы $(7)$ имеет равный нулю предел при $n \to \infty $.

[свернуть]

Следствие Если $2\pi$ периодическая функция $f(x)$ кусочно дифференциируема на $[-\pi,\pi]$, то ее ряд Фурье в любой точке $x \in [-\pi,\pi]$ сходится к числу $$\frac{f(x_0+0)+f(x_0-0)}{2}.$$

Пример 1

На отрезке $[-\pi,\pi]$ найти тригонометрический ряд Фурье функции $f(x)=\left\{\begin{matrix}
1, x \in (0,\pi),\\ -1, x \in (-\pi,0),
\\ 0, x=0.
\end{matrix}\right.$

Исследовать сходимость полученного ряда.

Продолжая периодически $f(x)$ на всю вещественную ось, получим функцию $\widetilde{f}(x)$, график которой изображен на рисунке.

ggggggggg

Так как функция $f(x)$ нечетна, то $$a_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\cos kx dx =0;$$

$$b_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)\sin kx \, dx = $$ $$=\frac{2}{\pi}\int\limits_{0}^{\pi}f(x)\sin kx \, dx =$$ $$=-\frac{2}{\pi k}(1- \cos k\pi)$$

$$b_{2n}=0, b_{2n+1} = \frac{4}{\pi(2n+1)}.$$

Следовательно, $\tilde{f}(x)\sim \frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}.$

Так как ${f}'(x)$ существует при $x\neq k \pi$, то $\tilde{f}(x)=\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{2n+1}$, $x\neq k \pi$, $k \in \mathbb{Z}.$

В точках $x=k \pi$, $k \in \mathbb{Z}$, функция $\widetilde{f}(x)$ не определена, а сумма ряда Фурье равна нулю.

Полагая $x=\frac{\pi}{2}$, получаем равенство $1 — \frac{1}{3} + \frac{1}{5}- \ldots + \frac{(-1)^n}{2n+1}+ \ldots = \frac{\pi}{4}$.

[свернуть]

Пример 2

Найти ряд Фурье следующей $2\pi$-периодической и абсолютно интегрируемой на $[-\pi,\pi]$ функции:
$f(x)=-\ln |
\sin \frac{x}{2}|$, $x \neq 2k\pi$, $k \in \mathbb{Z}$, и исследовать на сходимость полученного ряда.

ttttttt

Так как ${f}'(x)$ существует при $ x \neq 2k \pi$, то ряд Фурье функции $f(x)$ будет сходиться во всех точках $ x \neq 2k \pi$ к значению функции. Очевидно, что $f(x)$ четная функция и поэтому ее разложение в ряд Фурье должно содержать косинусы. Найдем коэффициент $a_0$. Имеем $$\pi a_0 = -2 \int\limits_{0}^{\pi}\ln \sin \frac{x}{2}dx = $$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \,- \, 2\int\limits_{\frac{\pi}{2}}^{\pi}\ln \sin \frac{x}{2}dx =$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin \frac{x}{2}dx \, — \, 2\int\limits_{0}^{\frac{\pi}{2}}\ln\cos \frac{x}{2}dx=$$ $$= -2 \int\limits_{0}^{\frac{\pi}{2}}\ln (\frac{1}{2}\sin x)dx =$$ $$= \pi \ln 2 \, — \, 2 \int\limits_{0}^{\frac{\pi}{2}}\ln \sin x dx =$$ $$= \pi \ln 2 \, — \, \int\limits_{0}^{\pi}\ln \sin \frac{t}{2}dt = \pi\ln 2 + \frac{\pi a_0}{2},$$ откуда $a_0= \pi \ln 2$.

Найдем теперь $a_n$ при $n \neq 0$. Имеем $$\pi a_n = -2 \int\limits_{0}^{\pi}\cos nx \ln \sin \frac{x}{2}dx = $$ $$ = \int\limits_{0}^{\pi} \frac{\sin(n+\frac{1}{2})x+\sin (n-\frac{1}{2})x}{2n \sin\frac{x}{2}}dx=$$ $$= \frac{1}{2n} \int\limits_{-\pi}^{\pi} \begin{bmatrix}
D_n(x)+D_{n-1}(x)\\ \end{bmatrix}dx.$$

Здесь $D_n(x)$- ядро Дирихле, определяемое формулой (2) и получаем, что $\pi a_n = \frac{\pi}{n}$ и, следовательно, $a_n = \frac{1}{n}$. Таким образом, $$-\ln |
\sin \frac{x}{2}| = \ln 2 + \sum_{n=1}^{\infty } \frac{\cos nx}{n}, x \neq 2k\pi, k \in \mathbb{Z}.$$

[свернуть]

Литература

Тест по материалу данной темы:

Несобственные интегралы, зависящие от параметра, равномерная сходимость.

Оглавление

  1. Несобственный интеграл, зависящий от параметра. Определение.
  2. Равномерная сходимость
  3. Примеры
  4. Список литературы
  5. Тесты

Несобственный интеграл, зависящий от параметра

Пусть функция двух переменных $f(x,y)$ определена на данной области: $\{a \leq x < + \infty, c \leq y \leq d\}$ (см. рисунок), и при каждом фиксированном $y \, \epsilon \, [c,d]$ существует несобственный интеграл $ \int\limits_{a}^{+\infty} f(x,y)\,dx$, являющийся функцией от $y$. Тогда функция $I(y) = \int\limits_{a}^{+\infty} f(x,y)\,dx$ $y \, \epsilon \, [c,d]$ называется несобственным интегралом первого рода, зависящим от параметра $y$. Также, интервал $[c,d]$ может быть бесконечным.

Возьмем функцию $f(x,y)$. Интеграл вида $ \int\limits_a^b f(x,y)\,dx$ является сходящимся на множестве $Y$, при выполнении следующих условий:

  1. $- \infty < a < b   \leq + \infty $
  2. функция $f(x,y)$ определена на $[a, b)   \times Y$, где $Y$ является множеством параметров.
  3. $ \forall \eta$ $\epsilon$ $[a,b)$ и $y$ $\epsilon$ $Y$ функция $f(x,y)$ интегрируема по Риману на отрезке $[a, \eta ]$.
  4. $ \forall y$ $\epsilon$ $Y$ несобственный интеграл $ \int\limits_a^b f(x,y)dx$ сходится.

Можно сделать вывод, что несобственный интеграл $ \int\limits_a^b f(x,y)dx$ сходится на $Y$, при условии, что $\forall y$ $\epsilon$ $Y$ и для любого числа $\varepsilon > 0$ существует такое $\eta(y, \varepsilon) < b$, такое, что для любого $\eta^\prime \, \epsilon (\eta, b)$ выполняется неравенство  $$\left|\int\limits_{\eta^\prime}^{b} f(x,y)dx\right| <\varepsilon .$$

Читать далее «Несобственные интегралы, зависящие от параметра, равномерная сходимость.»

Признак равномерной сходимости: Вейерштрасса, Абеля, Дирихле

Признак Вейерштрасса

Если для функционального ряда $\sum\limits_{n=1}^{\infty}{u}_{n}(x)$ можно указать такой сходящийся числовой ряд $\sum\limits_{n=1}^{\infty}{a}_{n}$, что для всех $n\geq n_{0}$ и для всех $x \in \varepsilon$ выполняется условие $\left | u_{n}(x) \right |\leq a_{n}$ то ряд $\sum\limits_{n=1}^{\infty}{u}_{n}(x)$ сходится абсолютно и равномерно на множестве $E $

Доказательство

Согласно условию $\left | u_{n}(x) \right |\leq a_{n}$ для любого $n\geq n_{0}$, любого $p \in N$ и для каждого $x \in \varepsilon$ выполняется неравенство $\left | \sum\limits_{k=n+1}^{n+p} u_{k}(x)\right |\leq \sum\limits_{k=n+1}^{n+p}\left | u_{k}(x)\right |\leq \sum\limits_{k=n+1}^{n+p} a_{k}$. Из сходимости ряда $\sum\limits_{n=1}^{\infty}{a}_{n}$ следует, что для него выполняется условие Коши, т.е. $\forall \varepsilon > 0 \exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \forall p \in N \rightarrow \sum\limits_{n=1}^{\infty}{a}_{k} 0 \exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \forall p \in N \rightarrow \sum\limits_{n=1}^{\infty}{a}_{k} 0 \exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \forall p \in N \forall x \in E \rightarrow \left |\sum\limits_{k=n+1}^{\infty}{u}_{k}(x) \right | < \varepsilon $, и в силу критерия Коши равномерной сходимости ряда этот ряд сходится равномерно на множестве $E$.

Абсолютная сходимость ряда $\sum\limits_{n=1}^{\infty}{u}_{n}(x)$ для каждого $x \in \varepsilon$ следует из правого неравенства $\left | \sum\limits_{k=n+1}^{n+p} u_{k}(x)\right |\leq \sum\limits_{k=n+1}^{n+p}\left | u_{k}(x)\right |\leq \sum\limits_{k=n+1}^{n+p} a_{k}$

Признак Дирихле

Ряд $\sum\limits_{k=1}^{\infty}{a}_{k}(x) b_{k}(x)$ сходится равномерно на множестве $E$, если выполняются условия:

  • последовательность $\left \{B_{n} (x) \right \}$, где $B_{n} (x) = \sum\limits_{n}^{k = 1}b_{k}(x)$, равномерно ограничена на множестве $E$, т.е. $\exists M > 0: \forall x \in E \forall n \in N \rightarrow \left |B_{n} \right | \leq M$
  • последовательность $\left \{a_{n} (x) \right \}$ монотонна на множестве $E$, т.е. $ \forall x \in E \forall n \in N \rightarrow a_{n+1} (x) \leq a_{n} (x)$ и равномерно стремится к нулю, т.е. $a_{n}(x) \underset{\rightarrow}{\rightarrow} 0, x \in E$

Доказательство

Воспользуемся оценкой $\left |\sum\limits_{k=n+1}^{n+p} a_{k}(x)b_{k}(x) \right | \leq 2M(\left |a_{n+1}(x) \right | + \left |a_{n+p}(x) \right |)$, полученной при доказательстве признака Дирихле для числовых рядов. Условие $a_{n}(x) \underset{\rightarrow}{\rightarrow} 0, x \in E$ означает, что $\forall \varepsilon > 0 \exists N_{\varepsilon}: \forall k \geq N_{\varepsilon} \forall x \in E \rightarrow \left |a_{k}(x) \right | 0: \forall x \in E \forall n \in N \rightarrow \left |B_{n} \right | \leq M$, $\left |\sum\limits_{k=n+1}^{n+p} a_{k}(x)b_{k}(x) \right | \leq 2M(\left |a_{n+1}(x) \right | + \left |a_{n+p}(x) \right |)$ и $\forall \varepsilon > 0 \exists N_{\varepsilon}: \forall k \geq N_{\varepsilon} \forall x \in E \rightarrow \left |a_{k}(x) \right | < \frac{\varepsilon}{4M}$ следует, что для всех $n \geq N_{\varepsilon}$, для всех $p \in N$ и для всех $x \ in E$ выполняется неравенство $\left |\sum\limits_{k=n+1}^{n+p}a_{k}(x)b_{k}(x) \right | < \varepsilon$, и в силу критерия Коши ряд $\sum\limits_{k=1}^{\infty}{a}_{k}(x) b_{k}(x) $ сходится равномерно на множестве $E$.

Признак Абеля

Ряд $\sum\limits_{k=1}^{\infty}{a}_{k}(x) b_{k}(x) $ сходится равномерно на множестве $E$, если выполняются условия:

  • ряд $\sum\limits_{n=1}^{\infty} b_{n}(x)$ сходится равномерно на множестве $E$;
  • последовательность $\left \{a_{n} (x) \right \}$ монотонна на множестве $E$, т.е. $\forall n \in N \forall x \in E \rightarrow a_{n+1}(x)\leq a_{n}(x)$ и равномерно ограничена, т.е.$\exists M > 0: \forall n \in N \forall x \in E \rightarrow \left |a_{n}(x) \right |\leq M$

Доказательство

Обозначим $B_{j}^{(n)}(x) = \sum\limits_{k=n+1}^{n+j}b_{k}(x)$. Тогда ряд $\sum\limits_{n=1}^{\infty} b_{n}(x)$ удовлетворяет условию Коши, т.е. $\forall \varepsilon > 0 \exists N_{\varepsilon}: \forall n \geq N_{\varepsilon} \forall j \in N \rightarrow \left | B_{j}^{(n)}(x) \right | 0: \forall n \in N \forall x \in E \rightarrow \left |a_{n}(x) \right |\leq M$ и $\forall \varepsilon > 0 \exists N_{\varepsilon}: \forall n \geq N_{\varepsilon} \forall j \in N \rightarrow \left | B_{j}^{(n)}(x) \right | < \frac{\varepsilon}{3M}$, получаем $\left | \sigma \right | 0 \exists N_{\varepsilon}: \forall p \in N \forall x \in E \rightarrow \left |\sum\limits_{k=n+1}^{n+p} a_{k}(x)b_{k}(x) \right |< \varepsilon$, и по критерию Коши ряд $\sum\limits_{n=1}^{\infty} b_{n}(x)$ сходится равномерно на множестве $E$.

Список литературы:

Признак равномерной сходимости: Вейерштрасса, Абеля, Дирихле

Вопросы для усвоения темы :»Признак равномерной сходимости: Вейерштрасса, Абеля, Дирихле»


Таблица лучших: Признак равномерной сходимости: Вейерштрасса, Абеля, Дирихле

максимум из 2 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Равномерная сходимость функциональных последовательностей

Пусть заданы последовательность функций [latex]f_{n}\left(x \right) \in C, n = 1,2,…[/latex] и функция [latex]f[/latex], определенные на множестве [latex]X[/latex]. Будем говорить, что указанная последовательность сходится к функции [latex]f[/latex] равномерно на множестве [latex]X[/latex], если для любого [latex]\varepsilon > 0[/latex] существует такой номер [latex]n_{\varepsilon}[/latex], что если [latex]n > n_{\varepsilon}[/latex], то для всех [latex]x \in X[/latex] выполняется неравенство [latex]\left|f_{n}\left(x \right) — f\left(x \right)\right| < \varepsilon [/latex].

Последовательность [latex]f_{n}\left(x \right) \in C, n = 1,2,…[/latex] называется равномерно сходящейся на множестве [latex]X[/latex], если существует функция [latex]f[/latex], к которой она равномерно сходится на [latex]X[/latex].

Очевидно, что если последовательность [latex]f_{n}\left(x \right) \in C, n = 1,2,…[/latex] равномерно сходится к функции [latex]f[/latex] на множестве [latex]X[/latex], то она и просто сходится к этой функции на [latex]X[/latex].

Если последовательность [latex]\left\{f_{n} \right\}[/latex] сходится на множестве [latex]X[/latex] к функции [latex]f[/latex], то символически будем записывать это так: [latex]f_{n}\underset{x}{\rightarrow}f[/latex].

Если же эта последовательность равномерно сходится на [latex]X[/latex] к функции [latex]f[/latex], то будем писать: [latex]f_{n}\underset{\underset{x}{\rightarrow}}{\rightarrow}f[/latex].

Заметим, что если последовательность [latex]f_{n}\left(x \right) \in C, n = 1,2,…[/latex] просто сходится к функции [latex]f[/latex] на множестве [latex]X[/latex], то это означает, что для любого [latex]\varepsilon > 0[/latex] и любого [latex]x \in X[/latex] существует номер [latex]n_{0} = n_{0}\left(\varepsilon ,x \right)[/latex], зависящий как от [latex]\varepsilon[/latex], так и от [latex]x[/latex], такой, что для всех номеров [latex]n > n_{0}[/latex] имеет место неравенство [latex]\left|f_{n}\left(x \right) — f\left(x \right)\right| < \varepsilon [/latex].

my

Сущность равномерной сходимости последовательности функций состоит в том, что для любого [latex]\varepsilon > 0[/latex] можно выбрать такой номер [latex]n > n_{\varepsilon}[/latex], зависящий только от заданного [latex]\varepsilon[/latex] и не зависящий от выбора точки [latex]x \in X[/latex], что при [latex]n > n_{\varepsilon}[/latex] неравенство [latex]\left|f_{n}\left(x \right) — f\left(x \right)\right| < \varepsilon [/latex] будет выполняться всюду на множестве [latex]X[/latex], т.е. «графики» функций [latex]f_{n}[/latex] расположены в «[latex]\varepsilon[/latex] — полоске» , окружающей график функции [latex]f[/latex](рис. 1).

Таким образом, в случае равномерной сходимости для любого [latex]\varepsilon > 0[/latex] при всех достаточно больших [latex]n[/latex](а именно при [latex]n > n_{\varepsilon}[/latex]) значение функций [latex]f_{n}[/latex] приближают функцию [latex]f[/latex] с погрешностью, меньшей [latex]\varepsilon[/latex], сразу на всем множестве [latex]X[/latex].

Запишем для наглядности определения сходящихся и равномерно сходящихся на множестве [latex]X[/latex] последовательностей с помощью символов существования и всеобщности:

[latex]f_{n}\underset{x}{\rightarrow}f\overset{def }{\Leftrightarrow }\forall\varepsilon > 0 \forall x \in X \exists n_{\varepsilon } \forall n > n_{\varepsilon }:\left | f_{n}\left ( x \right ) — f \left ( x \right ) \right | < \varepsilon[/latex]
[latex]f_{n}\underset{\underset{x}{\rightarrow}}{\rightarrow}f\overset{def }{\Leftrightarrow }\exists n_{\varepsilon } \forall x \in X \forall n \forall n_{\varepsilon }: \left | f_{n}\left ( x \right ) — f \left ( x \right ) \right | < \varepsilon[/latex]

Пример

Последовательность [latex]1,x, x^{2},…,x^{n},…[/latex] на отрезке [latex]\left[0, q \right], 0 < q < 1[/latex], сходится равномерно к функции, тождественно равной нулю. Действительно, если [latex]0 \leq x \leq q[/latex] то [latex]0 \leq x ^{n}\leq q^{n}, n = 1,2,… [/latex].

Так как [latex]\lim_{n \rightarrow \infty} q^{n} = 0[/latex], то для любого фиксированного [latex]\varepsilon > 0 [/latex] существует такое [latex]n_{\varepsilon}[/latex], что [latex]q^{n} n_{\varepsilon}[/latex]. В силу неравенства [latex]0 \leq x ^{n}\leq q^{n}, n = 1,2,… [/latex], [latex]0 \leq x^{n} n_{\varepsilon}[/latex] и всех [latex]x \in \left[0, q \right][/latex].

Теорема

Последовательность функций [latex]\left\{f_{n} \right\}[/latex], определенных на множестве [latex]X[/latex], равномерно сходится на этом множестве к функции [latex]f[/latex] в том и только том случае, когда [latex]\lim_{n \rightarrow \infty}\underset{x \in X}{\sup}\left|f_{n}\left(x \right) — f\left(x \right)\right| = 0[/latex].

Доказательство

Если соблюдены все условия сходимости функциональных последовательностей, то для каждого [latex]\varepsilon > 0[/latex] существует такой номер [latex]n_{\varepsilon}[/latex], что для всех [latex]n > n_{\varepsilon}[/latex] и всех [latex]x \in X[/latex] выполняется неравенство [latex]\left|f_{n}\left(x \right) — f\left(x \right)\right| n_{\varepsilon}[/latex] будем иметь [latex]\underset{x \in X}{\sup}\left|f_{n}\left(x \right) — f\left(x \right)\right| \leq \frac{\varepsilon }{2} < \varepsilon [/latex], а это, согласно определению предела числовой последовательности, и означает выполнение условия [latex]\lim_{n \rightarrow \infty}\underset{x \in X}{\sup}\left|f_{n}\left(x \right) — f\left(x \right)\right| = 0[/latex].

Обратное: Если данное условие выполнено, то, по определению конечного предела последовательности элементов из [latex]\bar{R}[/latex], для любого [latex]\varepsilon > 0[/latex] существует такой номер [latex]n_{\varepsilon}[/latex], что для всех [latex]n > n_{\varepsilon}[/latex] выполняется неравенство [latex]\underset{x \in X}{\sup}\left|f_{n}\left(x \right) — f\left(x \right)\right| < \varepsilon [/latex].

Отсюда следует, что для всех [latex]n > n_{\varepsilon}[/latex] и всех [latex]x \in X[/latex] справедливо неравенство [latex]\left|f_{n}\left(x \right) — f\left(x \right)\right| < \varepsilon [/latex], т.е. выполняются условия определения.

В силу того, что почти все члены последовательностей верхних граней [latex]\underset{x \in X}{\sup}\left|f_{n}\left(x \right) — f\left(x \right), n = 1,2,… \right| [/latex], для равномерно сходящихся последовательностей функций конечны, критерий [latex]\lim_{n \rightarrow \infty}\underset{x \in X}{\sup}\left|f_{n}\left(x \right) — f\left(x \right)\right| = 0[/latex], по существу, сводит понятие равномерной сходимости функциональной последовательности к понятию сходимости числовой последовательности.

Список литературы:

Тест по теме «Равномерная сходимость функциональных последовательностей»


Таблица лучших: Равномерная сходимость функциональных последовательностей

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных