Для натуральних чисел $m$ і $n$ позначимо через $F(m,n)$ кількість всіх зв’язних клітинних фігур прямокутнику $m\times n$. Доведіть, що парність числа $F(m,n)$ збігається з парність числа $\frac{n(n+1)}{2}\cdot\frac{m(m+1)}{2}.$ (Зв’язна клітинна фігура – це така непорожня множина клітин, що з будь-якої клітини цієї множини можна пройти в будь-яку іншу клітину цієї множини по клітинах цієї множини, переходячи щоразу в сусідню по стороні клітину.)
А.Бадзян
Рішення
Припустимо, що $F(m,0) = 0.$ Зв’язні фігури в прямокутнику $m\times 1$ – це $m$ фігур з однієї клітини та смужки із двох або більше клітин. Кожна смужка визначається парою клітин – першою та останньою, тому $$F(m,1) = m + \frac{m(m-1)}{2} = \frac{m(m+1)}{2}.$$
Нехай у прямокутнику $m$ рядків та $n\gt 1$ стовпців. Позначимо через $l$ вертикальну вісь симетрії. Кожній зв’язній фігурі відповідає фігура, симетрична щодо $l,$ тому несиметричні щодо $l$ фігури розбиваються на пари, і парність $F(m,n)$ збігається з парністю кількості зв’язних фігур, симетричних щодо $l.$
Розглянемо деяку фігуру $T,$ симетричну щодо $l.$
Нехай $n$ непарне, $n =2k-1,$ $k\ge 2.$ Фігура $T$ містить хоча б одну клітину $k$-го стовпця, інакше з клітини фігури $T$ неможливо пройти по клітинам $T$ в симетричну відносно $l$ клітину, переходячи кожен раз в сусідню клітину. Зауважимо, що частина $T_{1}$ фігури $T,$ що розташована в $k$ найлівіших стовпцях, зв’язна. Дійсно, розглянемо дві клітини $x$ та $y$ фігури $T_{1}.$ Нехай $x’$ – клітина, що симетрична $x$ відносно $l,$ a $x’,z_{1},z_{2},\ldots,z_{t},y$ – послідовність клітин, що утворює шлях з $x’$ в $y$ по сусідніх клітинах фігури $T.$ Тоді, замінюючи в цьому шляху клітини, що лежать правіше $k$-го стовпця, на симетричні щодо $l,$ ми отримаємо шлях з $x$ в $y$ по сусідніх клітинах фігури $T_{1}$ (див. малюнок). Навпаки, якщо фігура $T_{1}$ розташована у прямокутнику, що складається з $k$ найлівіших
стовпців, зв’язна і містить хоча б одну клітину $k$-го стовпця, можна однозначно продовжити фігуру $T_{1}$ до зв’язної фігури $T,$ симетричної відносно $l$. Кількість зв’язних фігур у прямокутнику $m\times k$ дорівнює $F(m,k),$ серед них $F(m,k-1)$ фігур лежать у перших $k-1$ стовпцях (тобто не містить клітин $k$-го стовпця). Отже, кількість зв’язних симетричних щодо $l$ фігур у прямокутнику $m\times (2k-1)$ дорівнює $F(m,k)-F(m,k-1).$
Для парного $n = 2k,$ $k\ge 1,$ міркуючи аналогічно, встановимо взаємно однозначну відповідність між зв’язними симетричними щодо $l$ фігурами та зв’язними фігурами, що розташовані в перших $k$ стовпцях і що містять хоча б одну клітинку $k$-го стовпця. Звідси випливає, що кількість зв’язних симетричних щодо $l$ фігур у прямокутнику $m\times 2k$ дорівнює $F(m,k)-F(m,k-1).$
Отже, для $n = 2k-1$ и $n = 2k$ парність $F(m,n)$ збігається з парністю числа $F(m,k)-F(m,k-1).$
Доведемо індукцією по $n,$ що $F(m,n)$ непарно тоді і лише тоді, коли $m$ і $n$ дають залишок $1$ або $2$ при діленні на $4;$ звідси відразу випливає твердження задачі. Твердження вірне при $n = 0$ і $n = 1.$
Нехай $m$ дає залишок $0$ або $3$ при діленні на $4.$ Припустимо, що це твердження вірне для $F(m,0),F(m,1),\ldots,F(m,n-1),$ тобто ці числа парні. Якщо $n = 2k-1,$ $k\ge 2,$ або $n = 2k,$ $k\ge 1,$ то $n\gt k,$ тому $F(m,n)$ парне, так як $F(m,k)-F(m,k-1)$ парне. Нехай $m$ дає залишок $1$ або $2$ при діленні на $4.$ Припустимо, що твердження вірно для чисел $F(m,0),F(m,1),\ldots,F(m,n-1),$ тобто $F(m,s)$ непарне тоді і лише тоді, коли $s$ дає залишок від ділення $1$ або $2$ при діленні на $4.$ Тоді $F(m,s)-F(m,s-1)$ непарне тоді і лише тоді, коли $s$ непарне. Звідси випливає, що $F(m,n)$ непарне тоді і тільки тоді, коли $n = 2(2l + 1)-1 = 4l + 1$ або $n = 2(2l + 1) = 4l + 2.$
Теорема об умножении определителей. Определитель произведения двух квадратных матриц порядка $n$ равен произведению определителей этих матриц: $$\det (A \cdot B)=\det (A) \cdot \det (B)$$ или полная формула: $$\det\left (\prod_{i=1}^{k}A_i\right )= \prod_{i=1}^{k}\det A_i, A_i\in\left(P\right), i=1, \ldots, k.$$
Для доказательства рассмотрим случай $k=2$. Допустим заданы две матрицы $A=\left \| a_{ij} \right \|\in M_n\left ( P \right )$ и $B=\left \| b_{ij} \right \|\in M_n\left ( P \right )$. Воспользуемся вспомогательной блочной матрицей $C=\begin{Vmatrix}A & 0\\-E & B\end{Vmatrix}$ размера $2n\times 2n$, определитель которой имеет вид: $$\Delta = \begin{vmatrix}
a_{11}&a_{12} &\cdots & a_{1n} &0 & 0 & \cdots & 0\\
a_{21}&a_{22} &\cdots & a_{2n} &0 & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
a_{n1}&a_{n2} &\cdots & a_{nn} &0 & 0 & \cdots & 0\\
-1& 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n}\\
0 & -1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn}
\end{vmatrix}$$
Вычислим $\Delta$ используя теорему Лапласа. Замечаем, что отличным от нуля будет только $det(A)$. Следовательно, $\Delta=\det(A) \cdot \det(B)$. Теперь с помощью элементарных преобразований изменим $\Delta$ так, что в итоге получим определитель вида $\begin{vmatrix}A & C\\ -E & O\end{vmatrix}$. Где $C$ является произведением матриц $A$ и $B$. Первый столбец умножим на $b_{11}$ и прибавим к $\left ( n+1 \right)$-му столбцу, второй на элемент $b_{21}$ и вновь прибавим к $\left ( n+1 \right )$-му столбцу. Так же обнулим остальные элементы матрицы $B$. Записав подробнее полученный определитель имеем: $$\Delta = \begin{vmatrix}
a_{11}&a_{12} &\cdots & a_{1n} & c_{11} & c_{12} & \cdots & c_{1n}\\
a_{21}&a_{22} &\cdots & a_{2n} & c_{21} & c_{22} & \cdots & c_{2n}\\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
a_{n1}&a_{n2} &\cdots & a_{nn} & c_{n1} & c_{n2} & \cdots & c_{nn} \\
-1& 0 & \cdots & 0 & 0 & 0 & \cdots & 0\\
0 & -1 & \cdots & 0 & 0 & 0 & \cdots & 0\\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 0
\end{vmatrix}$$ Снова вычислим определитель $\Delta$, разложением по последним $n$ столбцам. В этом случае отличным от нуля минором $n-$го порядка будет определитель матрицы $C$. Поэтому $\Delta= \det C\cdot\det\left (-E\right )=\det C\cdot\left ( -1 \right )^{n}\cdot\left (-1\right )^{S_1+S_2},$ где $$S_1=\sum_{k=n+1}^{2n}k, \textrm{ a } S_2=\sum_{k=1}^{n}k.$$ В результате получаем $\Delta=\det C\cdot\left ( -1 \right )^{2n\left ( n^{2}+n \right )}=\det C.$ Теперь, подставляя имеем доказательство теоремы: $$\Delta=\det C=\det (A \cdot B)=\det (A) \cdot \det (B).$$
Замечание Известно, что произведение матриц в общем случае не коммутативно, т.е. $AB \neq BA$. Но определитель это действительное число, а произведение действительных чисел коммутативно. Следовательно, $$\det(AB) = \det A \cdot \det B = \det B\cdot\det A = \det(BA)$$
Теорема об умножении определителей является следствием формулы Бине-Коши. Это теорема об определителе произведения прямоугольных матриц, в случае если это произведение дает квадратную матрицу. Справедлива для матриц с элементами любого коммутативного кольца.
Теорема (формула Бине-Коши). Пусть даны две матрицы $A$ и $B$ размеров $\left ( m\times n \right )$ и $\left ( n\times m \right )$ соответственно. Определитель матрицы равен нулю, если $m > n$, и равен сумме произведений всех соответствующих миноров $m$-го порядка мaтрицы $A$ на соответствующие миноры $m$-го порядка матрицы $B$, если $m \leqslant n$. Миноры матриц $A$ и $B$ одинакового порядка, равного наименьшему из чисел n и m, называются соответствующими друг другу, если они стоят в столбцах матрицы $A$ и строках матрицы $B$ с одинаковыми номерами: $$\det AB=\sum_{\gamma_1<\gamma_2<\cdots<\gamma_m }A_{\gamma_1<\gamma_2<\cdots<\gamma_m }B_{\gamma_1<\gamma_2<\cdots<\gamma_m },$$
где $A_{\gamma_1<\gamma_2<\cdots<\gamma_m }$ — минор матрицы $A$, составленный из столбцов с номерами $\gamma_1<\gamma_2<\cdots<\gamma_m$, и $B_{\gamma_1<\gamma_2<\cdots<\gamma_m }$ — минор матрицы $B$, составленный из строк с номерами $\gamma_1<\gamma_2<\cdots<\gamma_m$.
Допустим $C=AB$, $c_{ij}=\sum_{\gamma=1}^{m}{a_{i\gamma }b_{\gamma i}}$. Значит $$\det C=\sum_{\sigma}{(-1)^\sigma} \sum_{\gamma_1}{a_{1\gamma_1}b_{\gamma_{1}\sigma(1)}}\ldots \sum_{\gamma_n}{a_{n\gamma_n}b_{\gamma_{n}\sigma(n)}}=$$ $$=\sum_{\gamma_1,\ldots,\gamma_n=1}^{m}{a_{1\gamma_{1}}}\ldots a_{n_n}\sum_{\sigma}{(-1)^\sigma}b_{\gamma_1\sigma(1)}\ldots b_{\gamma_n\sigma(n)}=\sum_{\gamma_1,\ldots,\gamma_n=1}{a_{1\gamma_{1}}\ldots a_{n\gamma_n} B^{\gamma_1\ldots \gamma_n}}.$$ Минор $B^{\gamma_1\ldots \gamma_n}$ не равен нулю только в том случае, когда $\gamma_1, \ldots, \gamma_n$ попарно различны, значит и суммировать можно по парно различные номера $\gamma_1, \ldots, \gamma_n$. Для любой перестановки $\tau$ этих номеров справедливо $B^{\tau(\gamma_1)\ldots\tau(\gamma_n)}=(-1)^{\tau}B^{\gamma_1\ldots\gamma_n},$ из чего следует $$\sum_{\gamma_1,\ldots,\gamma_n=1}{a_{1\gamma_{1}}\ldots a_{n\gamma_n} B_{\gamma_1\ldots \gamma_n}}=\sum_{\gamma_1<\gamma_2<\ldots<\gamma_n}{(-1)^\tau a_{1\tau(1)}\ldots a_{n\tau(n)}B_{\gamma_1\ldots\gamma_n}}=$$ $$ =\sum_{\gamma_1<\gamma_2<\ldots<\gamma_m}{A_{\gamma_1<\gamma_2<\ldots<\gamma_m}B_{\gamma_1<\gamma_2<\ldots<\gamma_m}}.$$
Примеры решения задач
Рассмотрим примеры решения задач связанных с рассмотренной теоремой. Читателю рекомендовано попытаться решить задачи самостоятельно, а затем сверить свое решение с приведенным ниже.
Найти определитель произведения матриц: $$A=\begin{Vmatrix}3 & 4\\ 1 & -8\end{Vmatrix},
B=\begin{Vmatrix}2 & 9\\ -1 & 5\end{Vmatrix}$$
Решение
Находим определители данных матриц второго порядка: $\begin{vmatrix}3 & -4\\ 1 & -6\end{vmatrix}=-18+4=-14
$ и $\begin{vmatrix}2 & 7\\ 1 & 5\end{vmatrix}=10-7=3$. По теореме об определителе произведения матриц получаем: $$\det (A \cdot B)=\det \left (A \right ) \cdot \det \left ( B \right )=\left ( -14\right )\cdot\left ( 3 \right )=-42.$$ Вычислим этот же определитель, находя произведение матриц: $$A\cdot B=\begin{vmatrix}3 & -4\\ 1 & -6\end{vmatrix}\cdot\begin{vmatrix}2 & 7\\ 1 & 5\end{vmatrix}=\begin{vmatrix}2 & 1\\ -4 & -23\end{vmatrix}$$ Следовательно, $\det \left (A\cdot B\right )=-46+4=-42$. Результаты совпадают.
Найти определитель матрицы пятого порядка: $$M=\begin{Vmatrix}
1 & 2 & u & v & w\\3 & 4 & x & y & z\\0 & 0 & 3 & 2 & 1\\0 & 0 & 2 & 5 & 3\\0 & 0 & 3 & 4 & 2
\end{Vmatrix}$$
Решение
Разобьём данную матрицу на 4 блока, $M=\begin{Vmatrix}A & B\\ O & C\end{Vmatrix}$ где $A=\begin{Vmatrix}1 & 2\\ 3 & 4\end{Vmatrix}$,
$B=\begin{Vmatrix}u & v & w\\ x & y & z\end{Vmatrix}$, $O=\begin{Vmatrix}0 & 0 \\ 0 & 0\\ 0 & 0\end{Vmatrix}$, $C=\begin{Vmatrix}3 & 2 & 1\\ 2 & 5 & 3 \\3 & 4 & 2\end{Vmatrix}$.
Представим блочную матрицу как произведение (в справедливости этого представления можно убедиться, найдя произведение по правилам умножения блочных матриц). $$D=\begin{Vmatrix}
A & B\\C & D \end{Vmatrix} = \begin{Vmatrix} E_2 & O^T\\ O & C \end{Vmatrix} \cdot \begin{Vmatrix} E_2 & B\\ O & E_3 \end{Vmatrix} \cdot \begin{Vmatrix} A & O^T\\ O & E_3 \end{Vmatrix} ,$$ где $E_2,E_3$ — единичные матрицы соответствующих порядков.
$\begin{vmatrix} A & O^T\\ O & E_3 \end{vmatrix} = \det A =\left | A \right |$, $\begin{vmatrix} E_2 & O^T\\ O & C \end{vmatrix} = \det C =\left | C \right|$.
Матрица $\begin{Vmatrix} E_2 & B\\ O & E_3 \end{Vmatrix}$ — треугольная с единицами на главной диагонали, следовательно ее определитель равен $1$ По теореме об определителе произведения получаем:
$$\begin{vmatrix} A & B\\ O & C \end{vmatrix}= \begin{vmatrix} E_2 & O^T\\ O & C \end{vmatrix}\ \cdot \begin{vmatrix} E_2 & B\\ O & E_3 \end{vmatrix}\ \cdot\begin{vmatrix} A & O^T\\ O & E_3
\end{vmatrix}=\left | C \right |\cdot 1\cdot\left | A \right |=\left | A \right |\cdot\left | C \right |$$ Найдем $\det A$ и $\det C$. $\begin{vmatrix}1 & 2\\ 3 & 4\end{vmatrix}=-2$ $\begin{vmatrix}3 & 2 & 1\\ 2 & 5 & 3 \\3 & 4 & 2\end{vmatrix}=-15-8-36+30+18=-3$. Подставляя, получаем, $\det M=-2\cdot -3=-6$
Тест на знание темы «Теорема об умножении определителей».
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 3
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Нет рубрики0%
Алгебра0%
1
2
3
С ответом
С отметкой о просмотре
Задание 1 из 3
1.
Чему равен определитель произведения нескольких квадратных матриц?
Правильно
Неправильно
Задание 2 из 3
2.
Сопоставьте, если даны прямоугольные матрицы $D$ $K$ $\left ( m\times n \right )$ и $\left ( n\times m \right )$ размеров соответственно
Элементы сортировки
$\textrm{det}DK$ равен сумме произведений всех соответствующих миноров
$\textrm{det}DK$ равен произведению определителей матриц $D$ и $K$
$\textrm{det}DK$ равен нулю
если $m < n$
если $m = n$
если $m > n$
Правильно
Неправильно
Задание 3 из 3
3.
Заполните пропуски.
Обобщением теоремы об определителе произведения матриц
служит формула (Бине-Коши, теорема Бине-Коши, формула Бине Коши, теорема Бине Коши, теорема бине коши, формула бине коши), которая выражает определитель произведения прямоугольных матриц через (сумму) произведений всевозможных миноров матрицы A на (соответствующие) миноры того же порядка матрицы B.
Теорема. Допустим $z=r\cdot\left(\cos\phi+i\sin\phi\right)$ и $n$ принадлежит множеству целых чисел. Тогда можно считать, что $z^{n}=r^{n}\cdot\left(\cos\left(n\phi\right)+i\sin\left(n\phi\right)\right).$
Пусть $n=2,$ где $n\in \mathbb {Z}$ — база индукции. Тогда $$z^{2}=r\cdot\left(\cos\phi+i\sin\phi\right)\cdot r\cdot\left(\cos\phi+i\sin\phi\right)=r^{2}(\cos\left(2\phi\right)+i\sin\left(2\phi\right)).$$Допустим, что теорема верна $\forall n\leqslant m, m\leqslant2$ и докажем, что она так же верна и для $n=m+1.$ Тогда $$z^{m+1}=z^{m}\cdot z=r^{m}(\cos\left(m\phi\right)+i\sin\left(m\phi\right))\cdot r\cdot(\cos\phi+i\sin\phi)=$$ $$=r^{m+1}(\cos\left(m+1\right)\phi+i\sin\left(m+1\right)\phi).$$ Для $n=1$ формула простая, а если $n=0,$ то $z=1,$ то есть $$z^{0}=r^{0}\left(\cos\left(0\phi\right)+i\sin\left(0\phi\right)\right)=1\left(\cos0+i\sin0\right)=1.$$ Следовательно, теорема справедлива $\forall n\geqslant0.$ Докажем, что она так же справедлива $\forall n\lt0.$ Тогда $$z^{-n}=\dfrac{1}{z^{n}}=\dfrac{1}{\left(r\cdot\left(\cos\phi+i\sin\phi\right)\right)^{n}}=$$ $$=\dfrac{1}{r^{n}\left(\cos\left(n\phi\right)+i\sin\left(n\phi\right)\right)}=r^{-n}\dfrac{cos\left(n\phi\right)-i\sin\left(n\phi\right)}{\cos\left(n\phi\right)^{2}+\sin\left(n\phi\right)^{2}}=$$ $$=r^{-1}\dfrac{\cos\left(-n\phi\right)+i\sin\left(-n\phi\right)}{1}=r^{-n}\left(\cos\left(-n\phi\right)+i\sin\left(-n\phi\right)\right).$$ Теорема доказана.
Рассмотрим несколько примеров с использованием формулы Муавра.
Вычислить $\sqrt[5]{\dfrac{\left(-1+i\right)^{3}\cdot\left(\sqrt{3}+i\right)^{4}}{i^{1323}}}.$ Решение
Найдём сначала $r$ для $\left(-1+i\right)^{3}$: $$r=\sqrt{\left(-1\right)^{2}+1^{2}}=\sqrt{2}.$$ Теперь найдём аргумент $z$ для $\left(-1+i\right)^{3}.$ Для этого нужно найти угол $\alpha :$ $$\tan\alpha=1, \alpha=\dfrac{\pi}{4}+k\pi, k\in Z.$$ Так как $\sin\alpha \lt0$ и $\cos\alpha \lt0,$ то $\alpha=\dfrac{3\pi}{4}.$
Теперь найдём $r$ и $z$ для $\left(\sqrt{3}+i\right)^{4}:$ $$r=\sqrt{\sqrt{3}^{2}+1^{2}}=\sqrt{4}=2.$$ Найдём $z:$
$$\tan\beta=\dfrac{1}{\sqrt{3}}, \beta=\dfrac{\pi}{6}+s\pi, s\in Z.$$ Так как $\sin\beta\gt0$ и $\cos\beta\gt0,$ то $\beta=\dfrac{\pi}{6}.$ $$\left(-1+i\right)^{3}\cdot\left(\sqrt{3}+i\right)^{4}=\left(\cos\left(\dfrac{9\pi}{4}+\dfrac{4\pi}{6}\right)\right)+i\sin\left(\dfrac{9\pi}{4}+\dfrac{4\pi}{6}\right)=$$ $$=\cos\dfrac{\pi}{12}+i\sin\dfrac{\pi}{12},$$ $$i^{1323}=-i.$$ По формуле $\dfrac{\phi+2\pi k}{n},$ где $n=5,$ $k=\overline{0, 4}$ получаем:$$w_{0}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}}{5}\right)\right)=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\pi}{60}\right)+\right.$$ $$\left.+i\sin\left(\dfrac{\pi}{60}\right)\right),$$ $$w_{1}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+2\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+2\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{25\pi}{60}\right)+i\sin\left(\dfrac{25\pi}{60}\right)\right),$$ $$w_{2}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+4\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+4\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{49\pi}{60}\right)+i\sin\left(\dfrac{49\pi}{60}\right)\right),$$ $$w_{3}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+6\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+6\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{73\pi}{60}\right)+i\sin\left(\dfrac{73\pi}{60}\right)\right),$$ $$w_{4}=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{\dfrac{\pi}{12}+8\pi}{5}\right)+i\sin\left(\dfrac{\dfrac{\pi}{12}+8\pi}{5}\right)\right)=$$ $$=\sqrt[5]{\sqrt{2}^{3}\cdot16}\left(\cos\left(\dfrac{97\pi}{60}\right)+i\sin\left(\dfrac{97\pi}{60}\right)\right).$$
Вычислить $\left(\sqrt{3}+i\right)^{2020}.$ Решение
$$\tan\alpha=\dfrac{\sqrt{3}}{3}, \alpha=\dfrac{\pi}{6}+k\pi, k\in Z.$$ Так как $\sin\beta\gt0$ и $\cos\beta\gt0,$ то $\beta=\dfrac{\pi}{6}.$ $$\left(\sqrt{3}+i\right)^{2020}=\left(2\left(\cos{\dfrac{\pi}{6}}+i\sin{\dfrac{\pi}{6}}\right)\right)^{2020}=$$ $$=2^{2020}\left(\cos\left({\dfrac{2018+2}{6}}\pi\right)+i\sin\left({\dfrac{2018+2}{6}}\pi\right)\right)=$$ $$=2^{2020}\left(cos\dfrac{\pi}{3}+i\sin{\dfrac{\pi}{3}}\right)=2^{2020}\left(\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}\right).$$
Теорема Кронекера-Капелли. Критерий совместности системы линейных алгебраических уравнений. СЛАУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы. То есть, если в СЛАУ $r=\operatorname{rang}A=\operatorname{rang}\widetilde{A}$, где $\operatorname{rang}A$ — обозначает ранг матрицы системы, а $\operatorname{rang}\widetilde{A}$ — ранг расширенной матрицы, тогда данная матрица совместна, причём система имеет единственное решение, если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}=n$, где $n$ — число неизвестных, и бесконечное число решений, если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}<n$.
Скажем, что данная система совместна, в таком случае существуют числа $\left(c_{1},c_{2},\dots,c_{n}\right)$, которые являются частным решением матрицы, при подстановке их в систему. Мы получим равенство:
Следовательно, вектор-столбец свободных членов является линейной комбинацией столбцов $\left(a_{1},a_{2},\dots,a_{n}\right),$ матрицы $A.$ Так же, мы можем заметить, что сколько бы мы раз не приписали или не вычеркнули строку(столбец), от этого не меняется ранг системы, из этого следует, что $\operatorname{rang}A=\operatorname{rang}\widetilde{A}$.
Достаточность. Если $\operatorname{rang}A=\operatorname{rang}\widetilde{A}$, то это означает, что у них один и тот же базисный минор. Тогда, согласно теореме о базисном миноре, последний столбец свободных членов – линейная комбинация столбцов базисного минора.
При $\lambda\neq0$: $\operatorname{rang}\widetilde{A}=3$, $\operatorname{rang}A=2$. По теореме Кронекера-Капелли система линейных уравнений несовместна.
При $\lambda=0$: $\operatorname{rang}\widetilde{A}=2$, $\operatorname{rang}A=2$. По теореме Кронекера-Капелли система линейных уравнений совместна.
Критерий совместности СЛАУ Кронекера-Капелли
Лимит времени: 0
Навигация (только номера заданий)
0 из 4 заданий окончено
Вопросы:
1
2
3
4
Информация
Тест на закрепление материала «Критерий совместности СЛАУ Кронекера-Капелли».
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 4
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
1
2
3
4
С ответом
С отметкой о просмотре
Задание 1 из 4
1.
матрица совместима, если…
Задание 2 из 4
2.
Впишите пропущенные слова.
Система имеет единственное решение, если ранг (равен) числу неизвестных, и бесконечное число решений, если ранг (меньше) числа неизвестных.
Пусть число $\usepackage{amsfonts} x \in \mathbb {R}$. Тогда обозначим через $q_1$ наибольшее целое число, меньшее $x$. Если $x$ не целое число, то мы получим равенство вида $\displaystyle x = q_1 + \frac{1}{x_1}$, так как дробь $\displaystyle \frac{1}{x_1} < 1$, то $ x_1>1 $, и тогда аналогично для $x_1$ находим такое целое $q_2 < x_1$, получаем $\displaystyle x_1 = q_2 + \frac{1}{x_2}$, возвращаясь к первому равенству $\displaystyle x = q_1 + \frac{1}{\displaystyle q_2 + \frac{1}{x_2}}$. Продолжая этот процесс будем получать представления последующих $\displaystyle x_k:$ $$x_2 = q_3 + \frac{1}{x_3}, $$ $$x_3 = q_4 + \frac{1}{x_4},$$ $$\ldots$$ $$x_i = q_{i+1} + \frac{1}{x_{i+1}},$$ $$\ldots$$
В итоге и получим непрерывную дробь: $$\usepackage{amsmath} \begin{multline*} \displaystyle x = q_1 + \frac{1}{\displaystyle q_2+ \frac{1}{q_3+\cdots}} \\ \ddots \\ \cdots + \frac{1}{\displaystyle q_{n-1} + \frac{1}{\displaystyle q_{n}+\frac{1}{x_n}}}.
\end{multline*}$$
Далее, нам стоит рассмотреть два случая: первый — $\usepackage{amsfonts} x \in \mathbb {Q}$, т. е. $x$ — рациональное число и второй — $\usepackage{amsfonts} x \in \mathbb {R} \setminus \mathbb {Q}$, т. е. $x$ — иррациональное число. Почему важны именно эти случаи?
По определению, рациональное число представимо в виде несократимой дроби $\displaystyle \frac{m}{n}$, где $\usepackage{amsfonts} m \in \mathbb {Z}, \; n \in \mathbb {N}$, а, значит, и разложение, представленное сверху, должно быть конечным и, более того, может быть получено благодаря алгоритму Евклида.
С иррациональным числом получим ситуацию обратную — процесс можно будет продолжать неограниченно долго т. к. на каждом этапе $x_i$ будет иррационально.
Пусть $x_i$ — иррационально, тогда $$\displaystyle x_i = q_{i+1} + \frac{1}{x_{i+1}},$$ сумма $\displaystyle q_{i+1} + \frac{1}{x_{i+1}}$ — иррациональна, однако $q_{i+1}$ является целым по определению, которое мы дали ему выше $\Rightarrow$ дробь $\displaystyle \frac{1}{x_{i+1}}$ должна быть иррациональной. А это означает, что и $x_{i+1}$ — иррациональное число.
Т. е. получаем, что иррациональность $x_i$ влечёт за собой иррациональность $x_{i+1}$, а т. к. изначальное число $x$ — иррационально, то и все $x_j,$ при $j = 1,2,3 \ldots$ — иррациональны.
Как было упомянуто ранее, если $\usepackage{amsfonts} x \in \mathbb {Q}$, то его разложение в непрерывную дробь можно получить с помощью алгоритма Евклида.
Перед описанием алгоритма стоит ввести понятие неполного частного — это целые числа вида $q_i, \; i = \overline{1,n}$.
Опишем сам алгоритм:
Суть алгоритма заключается в том, что на каждом шаге мы будем непосредственно получать одно из неполных частных — $q_i$, а также отношение $\displaystyle \frac{r_{i}}{r_{i-1}}$ (начиная со второго шага).
Пусть нам задано рациональное число, тогда его можно записать в виде несократимой дроби $\displaystyle \frac{m}{n}$, где $\usepackage{amsfonts} m \in \mathbb {Z}, \; n \in \mathbb {N}$. Тогда, первый шаг: $$m=nq_1 + r_1 \Rightarrow \displaystyle \frac{m}{n} = q_1 + \frac{1}{\displaystyle \frac{m}{r_1}},$$ узнали значение $q_1$, а так же получили возможность вычислить значение $r_1$. Второй шаг: $$n = r_1q_2+r_2 \Rightarrow \displaystyle \frac{n}{r_1} = q_2 + \frac{1}{\displaystyle \frac{r_1}{r_2}},$$ узнали значение $q_2$, а так же получили возможность вычислить значение $r_2$. Продолжая алгоритм далее: $$r_1 = r_2q_3+r_3 \Rightarrow \displaystyle \frac{r_1}{r_2} = q_3 + \frac{1}{\displaystyle \frac{r_2}{r_3}}, \\ r_2 = r_3q_4+r_4 \Rightarrow \frac{r_2}{r_3} = q_4 + \frac{1}{\displaystyle \frac{r_3}{r_4}},\\ \cdots \\r_{n-2} = r_{n-1}q_n+r_n \Rightarrow \frac{r_{n-2}}{r_{n-1}} = q_n + \frac{1}{\displaystyle \frac{r_{n-1}}{r_n}}, \\ r_{n-1} = r_nq_{n+1}, \frac{r_{n-1}}{r_n} = q_{n+1}.$$ Заканчиваем алгоритм тогда, когда получим, что очередная дробь $\displaystyle \frac{r_{i-1}}{r_{i}}$ будет целым числом и, соответственно, $q_{i+1}$ будет полным частным.
Так как найдены все неполные частные, то дробь $\displaystyle \frac{m}{n}$ можно представить в виде: $$\usepackage{amsmath} \begin{multline*} \displaystyle x = q_1 + \frac{1}{\displaystyle q_2+ \frac{1}{q_3+\cdots}} \\ \ddots \\ \cdots + \frac{1}{\displaystyle q_{n-1} + \frac{1}{\displaystyle q_{n}+\frac{1}{q_{n+1}}}}.
\end{multline*}$$
С помощью алгоритма Евклида есть возможность найти разложение в непрерывную дробь, однако, иногда промежуточные результаты важнее конечного, а именно: $$\displaystyle \delta_1 = q_1, \; \delta_2 = q_1 + \frac{1}{q_2}, \; \delta_3 = q1 + \frac{1}{q_2 + \displaystyle \frac{1}{q_3}}, \; \ldots$$ $\delta_i$ называются подходящими дробями. Несложно заметить зависимость $\delta_{i+1}$ от $\delta_i$ — если в записи $\delta_i $ число $ q_i$ заменить на сумму $\displaystyle q_i + \frac{1}{q_{i+1}}$, то мы получим $\delta_{i+1}.$
Подходящие дроби будут нас интересовать тем, что они образуют последовательность, которая приближается к изначальному числу. Понятно, что зная все неполные частные (после применения алгоритма Евклида) можно вычислить значения всех подходящих дробей, однако, это не очень удобно и долго.
Введем специальные обозначения для нахождения значений подходящих дробей: $\displaystyle \delta_i = \frac{P_i}{Q_i}$. При этом положим, что $P_0=1, \; P_1 = q_1$ и $Q_0=0, \; Q_1 = 1$. Так же стоит отметить, что в силу того, что для рационального числа $\displaystyle x = \frac{m}{n} $ непрерывная дробь конечна, то и количество подходящих дробей будет конечно, а это означает что существует равенство $\displaystyle \frac{m}{n} = \frac{P_i}{Q-i}$. А так как подходящие дроби так же являются несократимыми, то равенство можно упростить до $m = P_i$ и $n = Q_i$. Тогда получим, что: $$\displaystyle \delta_1 = \frac{q_1}{1} = \frac{P_1}{Q_1}, $$ $$ \delta_2 = q_1 + \frac{1}{q_2} = \frac{q_2 q_1+1}{q_2 \cdot 1 + 0} = \frac{q_2 P_1+P_0}{q_2 Q_1 + Q_0} = \frac{P_2}{Q_2}, $$ $$ \delta_3 = q1 + \frac{1}{q_2 + \displaystyle \frac{1}{q_3}} = \frac{q_1 \left( q_2 + \displaystyle \frac{1}{q_3} \right) +1}{q_2 + \displaystyle \frac{1}{q_3}} = \frac{q_1 \left( q_2 q_3 + 1\right)+q_3}{q_2 q_3 +1} = $$ $$ = \frac{q_1 q_2 q_3 + q_1 +q_3}{q_2 q_3} = \frac{q_3 \left( q_1 q_2 + 1 \right) + q_1}{q_3 q_2 + 1} = \frac {q_3 P_2 + P_1}{q_3 Q_2 + Q_1}.$$
Несложно заметить рекуррентное выражение для $\displaystyle \frac{P_i}{Q_i}$: $$P_i = q_i P_{i-1} + P_{i-2} \\ Q_i = q_i Q_{i-1} + Q_{i-2}. $$ Докажем это с помощью математической индукции.
Лемма. При $n > 0$ имеет место равенство $P_n Q_{n-1} — P_{n-1}Q_n = (-1)^n$.
Проверим значение левой части при $n = 1$, получим: $$P_1 Q_0 — P_0 Q_1 = -1,$$ далее вычислим значение левой части при увеличении индекса на 1, т. е. при $n+1,$ получим: $$ P_{n+1} Q_n — P_n Q_{n+1} = \left( q_{n+1} P_n + P_{n-1} \right) Q_n — P_n \left( q_{n+1} Q_n + Q_{n-1} \right) = \\ = P_{n-1} Q_n — P_{n} Q_{n-1}, $$ получили выражение противоположное заданному в условии. А, значит, при изменении индекса на единицу меняется и знак выражения, а т. к. первое значение $-1$, то и получаем требуемое.
Примеры решения задач
Рассмотрим примеры задач в которых могут быть использованы непрерывные дроби. Рекомендуется сначала решать примеры самому, а только затем сверить решение с представленным ниже.
Разложить число $\displaystyle x = \frac{89}{13}$ в непрерывную дробь. Решение
Найти все подходящие дроби числа $\displaystyle x = \frac{127}{19}$. Решение
Для этого используем рекуррентные формулы подходящих дробей. Воспользуемся алгоритмом Евклида для поиска всех $q_i$: $$ 127 = 19 \cdot 6 + 13, \; q_1 = 6;$$ $$19 = 13 \cdot 1 + 6, \; q_2 = 1; $$ $$13 = 6 \cdot 2 + 1, \; q_3 = 2;$$ $$6 = 1 \cdot 6, \; q_4 = 6.$$
Далее будем выписывать подходящие дроби в порядке возрастания индекса: $$\displaystyle \delta_1 =\frac{q_1}{1} = \frac{6}{1}$$ $$\displaystyle \delta_2 =\frac{q_2 P_1 + P_0}{q_2 Q_1 + Q_0} = \frac{1 \cdot 6 + 1}{1 \cdot 1 + 0} = \frac{7}{1},$$ продолжая расчеты получим: $$\displaystyle \delta_3 = \frac{2 \cdot 7 + 6}{2 \cdot 1 + 1} = \frac{20}{3}$$ и, наконец, $$\displaystyle \delta_4 = \frac{6 \cdot 20 + 7}{6 \cdot 3 + 1} = \frac{127}{19} = x,$$как и ожидалось четвертая подходящая дробь равна заданному числу, т. к. максимальный индекс $q_i$ был равен четырём.
Разложить в непрерывную дробь иррациональное число $\sqrt{7}$. Решение
Для этого воспользуемся разложением, которое было представлено в теме первым. А именно
$$\displaystyle x_0 = \sqrt{7} = q_1 + \frac{1}{x_1} = 2 + \left( \sqrt{7} — 2 \right)$$ $$\displaystyle \frac{1}{x_1} = \sqrt{7} — 2 \Rightarrow x_1 = \frac{1}{\sqrt{7}-2} = \frac{\sqrt{7}+2}{3} = 1 + \frac{\sqrt{7}-1}{3} = 1 + \frac{1}{x_2},$$ $$\displaystyle x_2 = \frac{3}{\sqrt{7}-1} = \frac{3 \left( \sqrt{7} + 1 \right) }{6} = \frac{\sqrt{7}+1}{2} = 1 + \frac{\sqrt{7} — 1}{2} = 1 + \frac{1}{x_3},$$ $$\displaystyle x_3 = \frac{2}{\sqrt{7}-1} = \frac{2 \left( \sqrt{7} + 1 \right) }{6} = \frac{\sqrt{7}+1}{3} = 1 + \frac{\sqrt{7} — 2}{3} = 1 + \frac{1}{x_4},$$ $$\displaystyle x_4 = \frac{3}{\sqrt{7} — 2} = \frac{3 \left(\sqrt{7} + 2 \right) }{3} = \sqrt{7} + 2 = 4 + \left( \sqrt{7} — 2 \right).$$
Однако, слагаемое вида $\sqrt{7} — 2$ у нас уже было, а значит мы пришли к циклу. Выпишем все неполные частные, они же — целые части дробей. Получим: $\sqrt{7} = \left[2,\: \overline{1, \: 1, \: 1, \: 4} \right]$ — часть чисел находятся под чертой т. к. они находятся в цикле.
Восстановить по заданным $q_i = \left[10, \: 4, \: 3, \: 2, \: 4 \right]$ рациональное число $x$. Решение
Для этого воспользуемся разложением, полученным в результате алгоритма Евклида:
Получим дробь: $$10 + \frac{1}{\displaystyle 4 + \frac{1}{\displaystyle 3 + \frac{1}{\displaystyle 2 + \frac{1}{4}}}},$$ её значением и будет искомым $x$. Посчитав значение этой дроби получим, что $\displaystyle x = \frac{1361}{133}.$
Восстановить по заданным $q_i = \left[\overline{2, \: 9} \right]$ иррациональное число $x$. Решение
Так как число $x$ — иррациональное, то его непрерывная дробь будет бесконечной, поэтому воспользоваться методом из предыдущего примера не получится. Однако, так как мы видим по данным $q_i$, что дробь зацикливается, то можем записать следующие выражение: $$\displaystyle x = 2 + \frac{1}{\displaystyle 9 + \frac{1}{x}}$$ приведем дробь к квадратному уравнению: $$9x^2 — 18x + 2 = 0,$$ $$D = 324 + 72 = 396, \;
\displaystyle x_{1,2} = 1 \pm \frac{\sqrt{396}}{18}.$$ Т. к. целая часть числа равна 2, то вариант $\displaystyle x = 1-\frac{\sqrt{396}}{18}$ можно отбросить. И окончательный ответ: $$\displaystyle x = 1 + \frac{\sqrt{396}}{18}$$
Простейшие сведения о непрерывных дробях и их свойствах
Лимит времени: 0
Навигация (только номера заданий)
0 из 6 заданий окончено
Вопросы:
1
2
3
4
5
6
Информация
Тест на знание темы «Простейшие сведения о непрерывных дробях и их свойствах».
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 6
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Нет рубрики0%
1
2
3
4
5
6
С ответом
С отметкой о просмотре
Задание 1 из 6
1.
Какая из данных непрерывных дробей имеет ровно $3$ неполных частных?
Правильно
Неправильно
Задание 2 из 6
2.
Выберите все дроби, которые являются подходящими для $\displaystyle x = \frac{227}{53}$
Правильно
Неправильно
Задание 3 из 6
3.
Отсортировать числа по убыванию количества их неполных частных.
$\displaystyle \frac{923}{1089}$
$\displaystyle \frac{532}{235}$
$\displaystyle \frac{1039}{57}$
$\displaystyle \frac{103}{7}$
$\displaystyle \frac{65}{9}$
Правильно
Неправильно
Задание 4 из 6
4.
Найдите сумму чисел, образующих цикл в представлении числа $x = \sqrt{13}$ как непрерывной дроби.
Правильно
Неправильно
Задание 5 из 6
5.
Сопоставьте иррациональные числа с количеством чисел, которые образуют цикл при представлении данных иррациональных числе в виде непрерывных дробей.
Элементы сортировки
2
1
5
4
$\sqrt{12}$
$\sqrt{17}$
$\sqrt{29}$
$\sqrt{34}$
Правильно
Неправильно
Задание 6 из 6
6.
Заполните пропуски
Если число (рациональное), то количество его неполных частных будет числом конечным, а если (иррациональное), то бесконечным.