$$Q\left(h\right) = \sum_{i,j=1}^{n} a_{ij}h^{i}h^{j}, $$
где $a_{ij}$ — действительные числа. Матрица $\left(a_{ij}\right)$ называется матрицей квадратичной формы.
Будем считать, что $a_{ij}=a_{ji},$ т. е. что матрица $\left(a_{ij}\right)$ симметрична. Заметим, что $Q$ — это многочлен второго порядка от $n$ переменных $h_{1},\cdots ,h_{n}.$ Ясно, что для любого действительного числа $t$
$$Q\left(th\right) = t^{2}Q\left(h\right). $$
Это свойство называется свойством однородности второго порядка.
Определение Квадратичная форма $Q$ называется положительно определенной, если для любого $h \neq 0$ справедливо неравенство $Q\left(h\right) \gt 0.$
Аналогично, если для любого $h \neq 0$ имеем $Q\left(h\right)\lt 0,$ то такая квадратичная форма называется отрицательно определенной.
Если квадратичная форма принимает как положительные, так и отрицательные значения, то такая квадратичная форма называется неопределенной.
Если $Q\left(h\right)\geqslant 0$ для всех $h,$ то форма называется положительно полуопределенной, а если $Q\left(h\right)\leqslant 0$ для всех $h,$ то форма называется отрицательно полуопределенной.
Квадратичная форма называется знакоопределенной, если она положительно определенная или отрицательно определенная.
Для любой квадратичной формы $Q$ $$|Q(h)| \leqslant \sum_{i,j=1}^{n} |a_{i j}| |h^{i}| |h^{j}| \leqslant | h^{2} | \sum_{i,j=1}^{n} |a_{i j}| \equiv K | h^{2} |.$$
Эта оценка показывает, что при $h \rightarrow 0$ квадратичная форма стремится к нулю. Если квадратичная форма знакоопределенная, то полученный порядок стремления к нулю оказывается точным. Именно, справедлива
Итак, $Q(x)\geqslant \lambda (|x|=1).$ Если теперь $h$ — произвольный вектор из $\mathbb{R}^{n},$ то положим $ x = \frac{h}{|h|}.$ Тогда $|x|=1,$ т.е. $x$ лежит на единичной сфере, а поэтому $Q(x)\geqslant \lambda .$ Если вместо $x$ подставим его значение, то получим $Q(\frac{h}{|h|})\geqslant \lambda .$ Воспользовавшись свойством однородности второго порядка для формы $Q$, имеем $Q(h)\geqslant \lambda|h|^{2}.$
Теперь займемся таким вопросом. Как по матрице коэффициентов квадратичной формы судить о знакоопределенности формы? Рассмотрим подробно случай $n=2.$
Пусть $Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ Предположим сначала, что $a_{11}\neq 0.$ Тогда $$Q(h,k)=\frac{1}{a_{11}}(a_{11}^{2} h^{2}+2a_{11}a_{12}hk+a_{11}a_{22}k^{2}) = \frac{1}{a_{11}}\left[(a_{11}h+a_{12}k)^{2}+\triangle k^{2} \right],$$ где
$$\triangle = a_{11}a_{22}-a_{12}^{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}.$$
- Если $\triangle \gt 0,$ то выражение в квадратных скобках положительно для любых $h$ и $k,$ не равных одновременно нулю, т.е. $Q(h,k)\neq 0,$ причём $sign (Q(h,k)) = sign (a_{11}).$ В этом случае форма является знакоопределенной, она сохраняет свой знак.
- Рассмотрим случай $\triangle \lt 0.$ Пусть, например, $k\neq 0.$ Тогда вынося за скобки $k^{2}$ и обозначая $t=\frac{h}{k},$ получаем $$ Q(h,k) = k^{2}\left[a_{11}t^{2}+2a_{12}t+a_{22} \right].$$ Если $a_{11}\neq 0,$ то в скобках имеем квадратный трёхчлен относительно $t.$ Его дискриминант $-4\triangle \gt 0.$ Поэтому этот квадратный трёхчлен имеет различные действительные корни, а значит принимает, как и положительные, так и отрицательные значения.
Если же $a_{11}=0,$ то $a_{12}\neq 0$(так как иначе бы получили, что $\triangle = 0$). Значит, в квадратных скобках линейный двучлен $2a_{12}t+a_{22},$ который также принимает как положительные, так и отрицательные значения.
Итак, если $\triangle \lt 0,$ то квадратичная форма $Q$ является неопределенной.
- Пусть $\triangle = 0.$ Если $a_{11}\neq 0,$ то получим $$Q(h,k) = \frac{1}{a_{11}}(a_{11}h+a_{12}k)^{2}.$$ Если, например, $a_{11} \gt 0,$ то всегда $Q(h,k) \geqslant 0,$ а при $h = -\frac{a_{12}k}{a_{11}}$ имеем $Q(h,k)=0.$ Это означает, что существуют ненулевые векторы, на которых форма обращается в нуль, и получаем, что форма полуопределена.
Если же $a_{11}=0,$ то в этом случае $\triangle = -a_{12}^{2}.$ Значит $a_{12}=0$ и $Q(h,k) = a_{22}k^{2}.$ Это — тоже полуопределенная форма.
Итак, если $\triangle = 0,$ то форма полуопределенная.
Окончательно приходим к следующему выводу.
$Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ и $\triangle = a_{11}a_{22}-a_{12}^{2} $
Тогда:
1) если $\triangle \gt 0$, то форма $Q$ — знакоопределенная, причём $sign (Q) = sign (a_{11});$
2) если $\triangle \lt 0 ,$ то $Q$ — неопределенная форма.
2) если $\triangle = 0 ,$ то $Q$ — полуопределенная форма.
Определение. Пусть $Q(h)=\sum_{i,j=1}^{n}a_{ij}h^{i}h^{j}$ — квадратичная форма на $\mathbb{R}^{n}$ с симметричной матрицей $$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$
Миноры этой матрицы, расположенные в её левом верхнем углу, называют главными минорами, т.е. главные миноры — это $$
\triangle_{1} = a_{11}, \triangle_{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}, \cdots , \triangle_{n} =\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \ \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.
$$
Критерий Сильвестра. Для того, чтобы квадратичная форма $Q$ была положительно определенной, необходимо и достаточно, чтобы все её главные миноры были положительными.
Критерий отрицательной определенности. Для того, чтобы квадратичная форма $Q$ была отрицательно определенной, необходимо и достаточно, чтобы были выполнены следующие условия: $-\triangle_{1} \gt 0,\triangle_{2} \gt 0,\cdots ,(-1)^{n}\triangle_{n} \gt 0,$ т.е. главные миноры должны иметь чередующиеся знаки, причём первый должен быть отрицательным.
Эти два критерия здесь мы доказывать не будем.
Примеры решения задач
- Найти матрицу квадратичной формы $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 4x_{1}x_{2} + x_{2}^{2} + 2x_{1}x_{3} — x_{3}^{2}$$
Решение
- Запишем квадратичную форму в виде $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 2x_{1}x_{2} — 2x_{2}x_{1} + x_{2}^{2} + x_{1}x_{3} + x_{3}x_{1} — x_{3}^{2}.$$
- Здесь $a_{11}=2,a_{12}=-2,a_{13}=1,a_{21}=-2,a_{22}=1,a_{23}=0,a_{31}=1,a_{32}=0,a_{33}=-1,$ следовательно, матрица этой квадратичной формы есть $$\begin{pmatrix} 2 & -2 &1 \\ -2 & 1 & 0 \\ 1 & 0 & -1\\ \end{pmatrix}.$$
-
Установить характер знакоопределенности квадратичной формы $$Q(x_{1},x_{2},x_{3})=4x_{1}^{2}+6x_{2}^{2}+2x_{3}^{2}+6x_{1}x_{2}$$
Решение
- Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{pmatrix}.$$
-
Теперь проверим знакоопределенность формы по критерию Сильвестра $$
\triangle_{1} = 4 \gt 0, \triangle_{2} = \begin{vmatrix}4 & 3 \\3 & 6 \end{vmatrix} = 15 \gt 0, \triangle_{3} =\begin{vmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{vmatrix} = 2\cdot15 = 30 \gt 0,$$ значит, квадратичная форма положительно определенная.
- Найти все значения $\lambda,$ при которых положительно определена квадратичная форма $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} + \lambda x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} + 4x_{1}x_{3}. $$
Решение
- Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{pmatrix}.$$
-
Найдём главные миноры: $$
\triangle_{1} = 2 , \triangle_{2} = \begin{vmatrix}2 & 2 \\2 & \lambda \end{vmatrix} = 2\lambda — 4 , \triangle_{3} =\begin{vmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{vmatrix} = 6\lambda — 20.$$ - По критерию Сильвестра, $Q$ положительно определена тогда и только тогда, когда $$\begin{cases}2\lambda -4 \gt 0, \\6\lambda — 20 \gt 0\end{cases}\Leftrightarrow \lambda \gt \frac{10}{3}.$$
Проверка знаний по пройденной теме
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.
Список использованной литературы
- В. И. Коляда, А. А. Кореновский КУРС ЛЕКЦИЙ по МАТЕМАТИЧЕСКОМУ АНАЛИЗУ часть 1 (2009 года) глава 12.8.1 стр. 293
- Лысенко З.М. Конспект лекций по математическому анализу