M648. О диагоналях вписанного четырехугольника

Задача из журнала «Квант» (1980 год, 10 выпуск)

Условие

Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенный из точки пересечения его диагоналей на стороны, лежат на одной окружности.

Решение

Прежде всего заметим, что если $ABCD$ — вписанный четырехугольник с перпендикулярными диагоналями (рис. 1), то подобные треугольники $AKB$ и $CKD$ ($K$ — точка пересечения диагоналей) расположены таким образом, что продолжение высоты, опущенной на гипотенузу одного из них, является медианой другого. (Этот факт, немедленно вытекающий из равенства отмеченных на рисунке 1 углов, по существу уже использовался в решении задач M546 и M592 — см. «Квант», 1980, № 1, 8.)

Рисунок 1

Далее: середины $L$, $P$, $M$, $Q$ сторон четырехугольника $ABCD$, являясь вершинами прямоугольника (рис. 2), лежат на одной окружности. Покажем, что центр $O$ этой окружности делит пополам отрезок $OK$ ($O$ — центр окружности, в которую вписан наш четырехугольник).

Рисунок 2

Для этого достаточно, например, показать, что четырехугольник $LKMO$ — параллелограмм. Поскольку $LK$ — медиана треугольника $AKB$, ее продолжение является высотой треугольника $CKD$, то есть $LK \perp DC$. Но и $OM \perp DC$ (диаметр, проходящий через середину хорды), поэтому отрезки $LK$ и $OM$ параллельны. Аналогично доказывается параллельность отрезков $LO$ и $KM$.

Теперь для окончания решения задачи нам достаточно установить, например, что $|O_1M| = |O_1H|$, где $H$ — основание перпендикуляра, опущенного из точки $K$ на сторону $CD$. Но это следует из того, что $O_1$ — середина гипотенузы $LM$ прямоугольного треугольника $LMH$ (рис. 3).

Рисунок 3

Итак, все восемь точек, упомянутых в условиях задачи, лежат на одной окружности. Интересно, что радиус этой «окружности восьми точек» целиком определяется радиусом $R$ данной окружности и величиной $|OK| = a$. В самом деле, искомый радиус равен половине длины $|LM|$, а $$|LM|^2 = |LP|^2 + |PM|^2 = $$ $$= \frac{1}{4}\left(|AC|^2 + |BD|^2\right) =$$ $$= \frac{1}{4}\left(|AK| + |KC|\right)^2 + \left(|BK| + |KD|)^2\right) =$$ $$= \frac{1}{4}\left(|AB|^2 + |CD|^2 + 2\left(|AK| \cdot |KC| + |BK| \cdot |KD|\right)\right) =$$ $$= \frac{1}{4}\left(|AB|^2 + |CD|^2 + 4\left(R^2 — a^2\right)\right) =$$ $$= \frac{1}{4}\left(4R^2 + 4\left(R^2 — a^2\right)\right) = 2R^2 — a^2.$$

(В этой вкладке мы вначале воспользовались тем, что произведение длин отрезков хорд, пересекающихся в одной и той же точке, постоянно: $$|AK| \cdot |KC| = |BK| \cdot |KD| = (R — a)(R + a)$$ (рис. 4),

Рисунок 4

а затем, сообразив, что $$90^{\circ} = \widehat{BCA} + \widehat{DBC} = \frac{\overset{\smile}{AB} + \overset{\smile}{CD}}{2}$$ и дополнив $\overset{\smile}{CD}$ до полуокружности дугой конгруэнтной $\overset{\smile}{AB}$ получили равенство $$|AB|^2 + |CD|^2 = (2R)^2 = 4R^2$$ см. рисунок 5)

Рисунок 5

Наметим другое решение. Сделаем гомотетию наших восьми точек с центром в точке $K$ и коэффициентом $2$. Тогда утверждение задачи М648 превращается в такую теорему:

Пусть два взаимно перпендикулярных луча с накалом в точке $K$ внутри данной окружности, вращаясь вокруг $K$, пересекают окружность в переменных точках $P$ и $Q$. Тогда четвертая вершина $T$ прямоугольника $PKQT$ (точка симметричная точке $K$ относительно середины $|PQ|$), а также точка $S$, симметричная точке $K$ относительно прямой $PQ$, двигаются по окружности концентричной с данной (рис. 6).

Второй факт (про $S$) следует из первого, так как $S$ симметрична точке $T$ относительно серединного перпендикуляра к $|PQ|$, а первый (про $T$) установлен в решении задачи М539 («Квант», 1979, № 11)

Рисунок 6

Эта «теорема о восьми точках» допускает следующее стереометрическое обобщение:

Если три взаимно перпендикулярных луча с началом в фиксированной точке $K$ внутри данной сферы, вращаясь вокруг $K$, пересекают сферу в переменных точках $A$, $B$ и $C$, то точка пересечения медиан треугольника $ABC$ и основание перпендикуляра, опущенного из $K$ на плоскость $ABC$, двигаются по сфере, центр которой находится в точке $O_1$ отрезка $OK$ ($O$ — центр данной сферы) такой, что $|O_1K| = \frac{1}{3}|OK|,$ а радиус равен $\frac{1}{3}\sqrt{3R^2 — 2a^2}$, где $a = |OK|,$ $R$ — радиус данной сферы.

Доказать это можно, например, следующим образом.

Пусть $D$ — вершина параллелепипеда, определенного отрезками $KA$, $KB$ и $KC$, диагонально противоположная к $K$. Все точки $D$ лежат на сфере с центром в той же точке $O$, что у исходной сферы, и радиусом $\sqrt{3R^2 — 2a^2}$ (см. решение задачи М639 — «Квант», 1969, № 11). При гомотетии с центром $K$ и коэффициентом $\frac{1}{3}$ точка $D$ будет все время переходить в точку пересечения медиан треугольника $ABC$ (докажите!), а точка $O$ перейдет в точку $O_1$. Таким образом, точка пересечения медиан треугольника $ABC$ все время лежит на указанной сфере.

Осталось показать, что проекция точки $K$ на плоскость треугольника $ABC$ также все время лежит на этой сфере. Поскольку отрезки $KA$, $KB$ и $KC$ взаимно перпендикулярны, проекция точки $K$ совпадет с точкой $H$ пересечения высот треугольника $ABC$. Утверждение будет доказано, если мы, например, получим равенство $|O_1H| = |O_1M|$, где $M$ — точка пересечения медиан треугольника $ABC$. Для этого заметим, что центр сферы $O$ проектируется в центр $Q$ описанной вокруг треугольника $ABC$ окружности, и воспользуемся таким известным фактом: точки $Q$, $M$ и $H$ лежат на одной прямой (прямой Эйлера), точка $M$ — между точками $Q$ и $H$, причем $2|QM| = |MH|$. (Если этот факт вам неизвестен, докажите его.) Остальное легко следует из рисунка 7: поскольку $|O_1K| = \frac{1}{3}|OK|$, а $|QM| = \frac{1}{3}|QH|$, точка $O_1$ проектируется в середину отрезка $MH$, то есть $O_1$ равноудалена от $M$ и $H$.

Рисунок 7
И. Шарыгин

Ф4. Задача о баллоне с газом

Условие

В баллоне содержится очищенный газ, но неизвестно какой. Что бы поднять температуру этого газа на один градус при постоянном давлении требуется $958,4$ дж, а при постоянном объёме — $704,6$ дж. Что это за газ?

Решение

При нагревании газа при постоянном объёме затрачиваемая энергия идёт только на изменение внутренней энергии газа, а при нагревании при постоянном давлении — ещё и на совершение работы. Запишем закон сохранения энергии для обоих случаев:$$\begin{equation} mc_v\Delta t = \Delta W.\label{eq:ref1}\end{equation}$$
$$\begin{equation} mc_p\Delta t = \Delta W+A.\label{eq:ref2}\end{equation}$$

Здесь $c_p$ — теплоёмкость газа при постоянном давлении (т.е. количество тепла, которое необходимо для нагревания $1$ кг газа при постоянном давлении), $c_v$ — теплоёмкость газа при постоянном объёме, $\Delta t$ -изменение температуры, $\Delta W$ — изменение внутренней энергии газа, $m$ — масса газа, $A = p\Delta V$ — совершённая при расширении газа работа ($\Delta V$ — изменение объёма, $p$ — давление).

Так как при повышении температуры газа на одинаковое число градусов изменение его внутренней энергии одинаково как при нагревании при постоянном объёме, так и при нагревании при постоянном давлении, то можно записать: $c_pm\Delta t = c_vm\Delta t+p\Delta V$. С помощью уравнение газового состояния (уравнения Клапейрона — Менделеева) совершённую работу можно выразить через молекулярную массу газа $\mu$ и газовую постоянную $R$: $p\Delta V = \frac{m}{\mu}R\Delta t$. Подставляя это соотношение в уравнение $\eqref{eq:ref1}$, получим: $c_p = c_v+\frac{R}{\mu}$, откуда:
$$\mu = \frac{R}{c_p-c_v} \approx 32,7$$ кг/кмоль.

Неизвестный газ — кислород с очень не большой примесью более тяжёлого газа.

Ф3. Задача о растяжении пружины

Условие

Из двух одинаковых кусков стальной проволоки свили две пружины. Диаметр витков одной из них равен $d$, другой $2d$. Первая пружина под действием груза растянулась на одну десятую своей длины. На какую часть своей длины растянется под действием того же груза вторая пружина?

Решение

Удлинение пружины равно $\Delta l = n\cdot 2d\cdot \sin\frac{\alpha}{2}$, где $n$ — число витков пружины, а $\alpha$ — угол, на который разворачиваются соседние витки пружины (Рис.). Так как удлинение пружины мало, то этот угол мал и $\sin\frac{\alpha}{2} \approx\frac{\alpha}{2}$. Поэтому $\Delta l = nd\alpha$.
Угол $\alpha$ пропорционален моментам сил $F$, которые растягивают виток: $\alpha \simeq F\cdot d$. Сила $F$ равна весу груза, подвешенного к пружине, и одинакова в обоих случаях, поэтому $\Delta l\sim nd^2$.

Диаметр витков второй пружины вдвое больше, а число витков у неё вдвое меньше, следовательно, абсолютное удлинение второй пружины вдвое больше, чем у первой. Таким образом, вторая пружина растянется на $\frac{2}{5}$ своей длины.

Многие, приславшие решение этой задачи, правильно нашли, что удлинение второй пружины в два раза больше чем первой, но забыли, что вторая пружина в двое короче, чем первая, поэтому относительное удлинение второй пружины равно не $\frac{1}{5}$, как получилось у них, а $\frac{2}{5}$.

Ф2. Задача о пружинном маятнике

Условие

На горизонтальной плоскости лежат два шарика с массами $m_1$ и $m_2$, скреплённые между собой пружиной с жёсткостью $c$. Плоскость гладкая. Шарики сдвигают, сжимая пружину, затем их одновременно отпускают. Определите периоды возникших колебаний шариков.

Решение

Центр масс системы не должен двигаться (или может двигаться равномерно и прямолинейно), поэтому шарики колеблются в противофазе с одинаковой частотой, а их отклонения $x_1$ и $x_2$ от положения равновесия удовлетворяют соотношению $c_1x_1 = c_2x_2$, где $c_1$ и $c_2$ — коэффициенты жесткости соответствующих кусков пружины длиной $l_1$ и $l_2$ ($l_1$ и $l_2$ — расстояния от шариков до центра масс системы; $$\left.l_1 = l \frac{m_2}{m_1+m_2}, l_2 = l \frac{m_1}{m_1+m_2}\right).$$

Удлинение $^1/q$-й части пружины всегда в $q$ раз меньше удлинения всей пружины, т.е. $^1/q$-я часть пружины имеет жёсткость в $q$ раз большую, чем жёсткость всей пружины. Поэтому $c = \frac{m_1+m_2}{m_2}$. Отсюда следует, что период колебаний шариков
$$T = 2\pi\sqrt{\frac{m_1m_2}{\left(m_1+m_2\right)c}}.$$

Интересно проверить ответ, взяв какой-нибудь предельный случай. Предположим, что масса $m_2$ очень велика: $m_2\gg m_1$. Тогда шарик с массой $m_1$ должен колебаться так, как если бы второй шар был не подвижно закреплён, и $T = 2\pi\sqrt{\frac{m_1}{c}}$.

Проверим нашу формулу
$$T = 2\pi\sqrt{\frac{m_1}{c\left(1+\frac{m_1}{m_2}\right)}} \simeq 2\pi\sqrt{\frac{m_1}{c}}.$$

М605. Задача о преобразовании плоскости

Условие

На плоскости отмечены $2n + 1$ различных точек. Занумеруем их числами $1, 2, \ldots, 2n + 1$ и рассмотрим следующее преобразование $R$ плоскости: сначала делается симметрия относительно первой точки, затем относительно второй и т. д. — до $\left(2n + 1\right)$-й точки.

а) Покажите, что y этого преобразования $R$ есть единственная «неподвижная точка» (точка, которая отображается в себя).

Рассмотрим всевозможные способы нумерации наших $2n + 1$ точек (числами $1, 2, \ldots, 2n + 1$). Каждой такой нумерации соответствует свое преобразование плоскости $R$ и своя неподвижная точка. Пусть $F$ — множество неподвижных точек всех этих преобразований.

б) Укажите множество $F$ для $n = 1$.

в) Какое максимальное и какое минимальное количество точек может содержать множество $F$ при каждом $n = 2, 3, \ldots$

Решение

Фиксируем произвольную систему координат.

Пусть точки $A\left(x; y\right)$ и $A^*\left(x^*; y^*\right)$ симметричны относительно точки $A’\left(x’; y’\right)$. Тогда $x’ = \frac{\left(x + x^*\right)}{2}, y’ = \frac{\left(y + y^*\right)}{2},$ откуда $$x^* = 2x’ — x, y^* = 2y’ — y.$$

Таким образом, точка с координатами $\left(x; y\right)$ при симметрии относительно точки с координатами $\left(x’; y’\right)$ переходит в точку с координатами $\left(2x’ — x; 2y’ — y\right)$.

Поэтому при нашем преобразовании $R$ точка с координатами $\left(x; y\right)$ перейдет в точку с координатами $\left(-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1}; -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1}\right),$ где $\left(x_i; y_i\right)$ — координаты $i$-й из заданных $2n + 1$ точек.

a) Для неподвижной точки $\left(x; y\right)$ преобразования $R$ эти координаты определяются однозначно из условия $$ \begin{cases}-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1} = x \\ -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1} = y\end{cases}$$ и равны $\left(x_1 — x_2 + \cdots — x_{2n} + x_{2n + 1}; y_1 — y_2 + \cdots — y_{2n} + y_{2n + 1}\right)$ или $$\left(\sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} x_i; \sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} y_i\right) \tag{*}$$ Утверждение a) доказано.

б) Пусть сначала данные точки $X_1, X_2, X_3$ не лежат на одной прямой. Если точка $A_1$ после симметрии относительно точек $X_1, X_2, X_3$ отобразилась в себя (см. рисунок), то $X_1, X_2, X_3$ — середины отрезков $A_1A_2, A_2A_3, A_3A_1$, где $A_2 = SX_1\left(A_1\right)$, $A_3 = SX_2\left(A_2\right)$. Значит, $\left[A_1A_2\right]$, $\left[A_2A_3\right]$, $\left[A_3A_1\right]$ — медианы треугольника $A_1A_2A_3$, так что точки $A_1, A_2, A_3$ можно получить из точек $X_1, X_2, X_3$ гомотетией с центром в центре тяжести $O$ треугольника $X_1X_2X_3$ и коэффициентом $(—2)$. Этим положение точек $A_i \left(i = 1, 2, 3\right)$ определяется однозначно. С другой стороны, каждая точка $A_i$ при соответствующей композиции симметрий относительно точек $X_i$, отображается в себя (например, $SX_2\left(SX_1\left(SX_3\left(A_3\right)\right)\right) = A_3$). Поэтому множество $F$ — это три точки, получающиеся из данных точек $X_1, X_2, X_3$ гомотетией с центром $O$ и коэффициентом $(-2)$. Легко видеть, что, если данные точки $X_1, X_2, X_3$ лежат на прямой, ответ получается, в разумном смысле, тот же.

в) Глядя на выражение $(*)$, нетрудно сообразить, что в множестве $F$ точек не больше, чем число способов выбрать из $2n + 1$ данных точек те $n$ точек, перед абсциссами которых в выражении $(*)$ будет стоять знак «минус», то есть не больше, чем $C^n_{2n + 1}$. Очевидно, эта оценка точна (возьмите, например, $2n + 1$ точек на одной прямой с целыми координатами $1, 2, 2^2, \ldots, 2^{2n}$).

Оценим теперь число неподвижных точек снизу. Спроектируем данные $2n + 1$ точек на прямую так, чтобы никакие две точки не попали в одну. На этой прямой введем координаты и перенумеруем точки в порядке возрастания координат: $x_1 < x_2 < \ldots < x_{2n + 1}$. Поставим $n$ минусов перед первыми $n$ числами и рассмотрим сумму $- x_1 — x_2 — \cdots — x_n + x_{n + 1} + \cdots + x_{2n + 1}$: она будет соответствовать некоторой неподвижной точке из нашего множества $F$. Далее произведем следующую операцию: выберем пару чисел $x_i$ и $x_{i + 1}$ таких, что перед $x_i$ стоит минус, а перед $x_{i + 1}$ — плюс, и поменяем у них знаки (на первом шаге, очевидно, $i = n$). Каждая такая операция приводит к сумме, соответствующей неподвижной точке из множества $F$, причем, поскольку после каждой такой операции сумма уменьшатся, все эти неподвижные точки различны. Всего таких операций (вне зависимости от их порядка) мы можем произвести $n\left(n + 1\right)$, что уже даст нам $n\left(n + 1\right) + 1$ неподвижных точек. Значит, в $F$ точек не меньше $n\left(n + 1\right) + 1$. Ровно столько неподвижных точек получится, если, например, снова взять $2n + 1$ точек на прямой с целыми координатами $-n, -\left(n — 1\right), \ldots, -1, 0, 1, 2, \ldots, n — 1, n$. При всевозможных способах расстановки $n$ «минусов» перед некоторыми из них максимальное значение суммы этих чисел равно $2 \cdot \left(1 + 2 + \cdots + n\right) = n(n + 1)$, минимальное значение равно $-n\left(n + 1\right)$, причем сумма может принимать любое четное значение между числами $-n\left(n + 1\right)$ и $n\left(n + 1\right)$ — всего $n\left(n + 1\right) + 1$ значений.

И. Клумова, А. Талалай