Лемма Больцано-Вейерштрасса

Теорема Больцано — Вейерштрасса, или лемма Больцано — Вейерштрасса о предельной точке — фундаментальная теорема математического анализа, гласящая, что из любой ограниченной последовательности точек пространства [latex]\mathbb{R}^n[/latex] можно выделить сходящуюся подпоследовательность. Т. Б. — В., используется при доказательстве многих теорем анализа, например, теоремы о достижении непрерывной на отрезке функцией своих точных верхней и нижней граней. Теорема названа в честь чешского математика Бернарда Больцано и немецкого математика Карла Вейерштрасса, которые независимо друг от друга вывели ее формулировку и доказательство.

Формулировка. Любое бесконечное ограниченное множество [latex]F \subset \mathbb{R}^n[/latex] имеет по крайней мере одну предельную точку. Доказательство. Пусть множество [latex]F[/latex] является бесконечным и ограниченным множеством. Предположим, что оно не имеет предельных точек. Следовательно, оно является замкнутым. Поскольку [latex]F[/latex] еще и ограничено, то, по теореме Гейне – Бореля, [latex]F[/latex] компактно. Для каждой точки [latex]x \in F[/latex] построим такую окрестность [latex]U_x[/latex], в которой нет других точек из [latex]F[/latex], кроме [latex]x[/latex] (если бы для какой-то точки [latex]x[/latex] такой окрестности не было, то эта точка была бы предельной для [latex]F[/latex]). Тогда семейство [latex]\left\{U_x \right\}_{x \in F}[/latex] образует открытое покрытие компактного множества [latex]F[/latex]. Пользуясь компактностью [latex]F[/latex], выберем из него некое конечное подпокрытие, иными словами. конечный набор шаров, в каждом из которых содержится лишь по одной точке из множества [latex]E[/latex]. Но это противоречит тому, что множество [latex]E[/latex] бесконечно.[latex]\square[/latex]
Замечание. Предельная точка, существование которой утверждается в данной теореме, вообще говоря, не обязана принадлежать множеству [latex]E[/latex].

Литература:

Лемма Гейне-Бореля

Лемма (Гейне – Бореля). Произвольный сегмент в [latex]\mathbb{R}^n[/latex] является компактным множеством .

Доказательство. Обозначим через [latex]I = [a^1,b^1;…;a^n,b^n][/latex] – сегмент в [latex]\mathbb{R}^n[/latex]. Докажем от противного. Пусть данный сегмент не является компактным. Тогда найдется такое открытое покрытие [latex]\Omega[/latex] сегмента [latex]I[/latex], что никакое конечное подсемейство множеств из [latex]\Omega[/latex] не покрывает [latex]I[/latex]. Все стороны [latex][a^i,b^i][/latex] сегмента [latex]I[/latex] разделим пополам. Таким образом данный сегмент можно разбить на [latex]2^n[/latex] сегментов. По крайней мере один из них не покрывается конечным подсемейством множеств из [latex]\Omega[/latex]. В противном случае, исходный сегмент [latex]I[/latex] также мог бы быть покрытым конечным набором множеств из [latex]\Omega[/latex], что приводит к противоречию. Обозначим через [latex]I_1[/latex] тот из подсегментов [latex]I[/latex], который не может быть покрыт конечным набором множеств из [latex]\Omega[/latex]. Каждую из сторон сегмента [latex]I_1[/latex] опять разделим пополам и среди полученных [latex]2^n[/latex] сегментов, на которые окажется разбитым [latex]I_1[/latex], возьмем тот, который не покрывается конечным подсемейством множеств из [latex]\Omega[/latex]. Обозначим его через [latex]I_2[/latex] и так далее. Продолжая подобные действия, получим последовательность вложенных сегментов [latex]I \supset I_1 \supset I_2 \supset … \supset I_{\nu} \supset …[/latex], таких, что любой из сегментов [latex]I_{\nu}[/latex] не может быть покрыт каким-либо конечным подсемейством множеств из [latex]\Omega[/latex]. Заметим также, что [latex]diam \> I_{\nu} = \frac{diam \> I}{2^{\nu}} \mapsto 0 (\nu \mapsto \infty)[/latex]. Применив к полученной последовательности [latex]I_{\nu}[/latex] лемму о вложенных сегментах, найдем точку [latex]x_0 \in I_{\nu} (\nu = 1,2,…)[/latex]. Поскольку [latex]x_0 \in I[/latex], а [latex]I[/latex] покрыт семейством [latex]\Omega[/latex] открытых множеств, то найдется такое открытое множество [latex]F \in \Omega[/latex], что [latex]x_0 \in F[/latex]. Поскольку множество [latex]F[/latex] открытое и точка [latex]x_0 \in F[/latex], то эта точка внутренняя в [latex]F[/latex]. Это означает, что найдется такая окрестность [latex]B(x_0,\delta)[/latex] точки [latex]x_0[/latex], которая целиком содержится во множестве [latex]F[/latex]. Но поскольку диаметры сегментов [latex]I_{\nu}[/latex] стремятся к нулю при [latex]\nu \mapsto \infty[/latex], то, начиная с какого-то номера [latex]\nu_0[/latex], они будут меньшими, чем [latex]\delta[/latex], то есть. [latex]diam \> I_{\nu} < \delta (\nu \geq \nu_0)[/latex]. Учитывая, что [latex]x_0 \in I_{\nu}[/latex], получаем, что [latex]I_{\nu} \subset B(x_0,\delta)[/latex], а значит, [latex]I_{\nu} \subset F[/latex]. Итак, мы получили, что при [latex]\nu \geq \nu_0[/latex] сегмент [latex]I_{\nu}[/latex] содержится во множестве [latex]F[/latex]. Но это противоречит выбору сегментов [latex]I_{\nu}[/latex], поскольку они были выбраны так, что никакое конечное подсемейство множеств из [latex]\Omega[/latex] не покрывает [latex]I_{\nu}[/latex]. Полученное противоречие завершает доказательство. [latex]\square[/latex]

Литература:

Компактные множества

КОМПАКТНЫЕ МНОЖЕСТВА

Определение. Пусть множество [latex]E \subset \mathbb{R}^n[/latex]. Семейство открытых множеств [latex]\left\{G_{\alpha}\right\}[/latex] называется открытым покрытием множества [latex]E[/latex], если каждая точка [latex]x \in E[/latex] принадлежит хотя бы одному из множеств [latex]G_{\alpha}[/latex], т. е. если [latex]E \subset \bigcup_{\alpha}G_{\alpha}[/latex].

Определение. Множество [latex]E \subset \mathbb{R}^n[/latex] называется компактным, если каждое его открытое покрытие содержит конечное подсемейство, также покрывающее множество [latex]E[/latex]. Это подсемейство называется конечным подпокрытием.

Например, множество, состоящее из одной точки, двух точек или любого конечного набора точек, очевидно, компактное. Пусть [latex]E \subset \mathbb{R}^n[/latex]. Диаметром множества [latex]E[/latex] называется число [latex]diam \> E = sup_{x,y \in E} \left | x — y \right |[/latex], т. е. верхняя грань расстояний между всевозможными парами точек из [latex]E[/latex]. Например, если [latex]E = \left [a^1,b^1;…;a^n,b^n \right ][/latex] – [latex]n[/latex]-мерный сегмент, то, очевидно, [latex]diam \> E = |b-a|[/latex], где [latex]a = (a^1,…,a^n), b = (b^1,…,b^n)[/latex].

Лемма (о вложенных сегментах). Пусть  [latex]\left\{I_{\nu}\right\}[/latex] – последовательность вложенных сегментов из [latex] \mathbb{R}^n [/latex], т. е. [latex]I_1 \supset I_2 \supset…\supset I_{\nu} \supset…[/latex], диаметры которых стремятся к нулю при [latex]\nu \mapsto \infty[/latex]. Тогда существует, и притом единственная, точка [latex]x_0[/latex], принадлежащая всем этим сегментам.
Доказательство. Пусть [latex]I_{\nu} = \left [a^1_{\nu},b^1_{\nu};…;a^n{\nu},b^n_{\nu} \right ] (\nu = 1,2,…)[/latex]. При каждом фиксированном [latex]i = 1,…,n[/latex] последовательность одномерных отрезков [latex] \left [a^i_{\nu},b^i_{\nu} \right ] (\nu = 1,2,…)[/latex] состоит из вложенных друг в друга отрезков, т. е. [latex][a^i_1,b^i_1] \subset [a^i_2,b^i_2] \subset … \subset [a^i_{\nu},b^i_{\nu}] \subset …[/latex], и длины этих отрезков стремятся к нулю при [latex]\nu \mapsto \infty[/latex]. По лемме Кантора, для зафиксированного [latex]i[/latex] найдется число [latex]x^i_0[/latex], такое, что [latex]x^i_0 \in [a^i_{\nu},b^i_{\nu}] (\nu = 1,2,…)[/latex], т. е. [latex]a^i_{\nu} \leq x^i_0 \leq b^i_{\nu} (\nu = 1,2,…)[/latex]. Но тогда точка [latex]x_0 = (x^1_0,…,x^n_0)[/latex], очевидно, принадлежит всем [latex]I_{\nu}[/latex]. Двух различных точек, принадлежащих всем [latex]I_{\nu}[/latex] одновременно, быть не может. Действительно, если [latex]{x}’,{x}» \in I_{\nu} (\nu = 1,2,…)[/latex], то [latex]|{x}’-{x}»| \leq diam \> I_{\nu}[/latex]. По условию правая часть стремится к нулю при [latex]\nu \mapsto \infty[/latex], так что [latex]{x}’={x}»[/latex].

Литература:

Компактные множества

Тест по теме «Компактные множества»

Таблица лучших: Компактные множества

максимум из 11 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных