Определение 1
Пусть задано линейное пространство $X$ над полем $\mathbb{P}$ $(X,\mathbb{P})$. Это линейное пространство называется конечномерным, если существует такое натуральное число $M \in \mathbb{N}$, что любая ЛНЗ система векторов пространства содержит не более $M$ векторов, в противном случае оно называется бесконечномерным.
Определение 2
Пусть $(X,\mathbb{P})$ — конечномерное пространство. Базисом пространства $X$ называется ЛНЗ система векторов, через которую линейно выражается каждый вектор этого пространства.
Определение 3
Размерностью конечномерного пространства $X$ называется число векторов любого его базиса. Обозначается как $dimX$.
Определение 4
$\langle e_1,e_2,\ldots,e_m \rangle$ — старый базис
$\langle g_1,g_2,\ldots,g_m \rangle$ — новый базис
$x=\sum_{j=1}^{m}\alpha_je_j=\sum_{i=1}^{m}\beta_ig_i$
Тогда:
$\left\{\begin{matrix}g_{1}=\alpha _{11}e_{1}+\alpha _{12}e_{1}+…+\alpha _{1m}e_{1}\\ g_{2}=\alpha _{11}e_{1}+\alpha _{12}e_{1}+…+\alpha _{1m}e_{1}\\ \ldots\\ g_{m}=\alpha _{11}e_{1}+\alpha _{12}e_{1}+…+\alpha _{1m}e_{1}\end{matrix}\right.$ — система, описывающая переход от старого базиса к новому.
Как видим, первое и второе уравнения линейно зависимы, т.е. ранг системы равен 2. Так как ранг системы совпадает с числом неизвестных, то система имеет только нулевое решение.
Необходимость. Пусть система векторов [latex]S=<a_{1},a_{2},..,a_{n}>[/latex] линейно независима, но существуют числа [latex]\alpha_{1},…,\alpha_{n}[/latex], не все равные нулю, такие, что
Допустим, что [latex]\alpha_{k} \neq 0[/latex]. Тогда из этого равенства [latex]a_{k}[/latex] определяется как линейная комбинация остальных векторов из [latex]a_{1},…,a_{n}[/latex]. Это означает, что система векторов [latex]S=<a_{1},a_{2},..,a_{n}>[/latex], согласно определению, линейно зависима, что противоречит предположению.
Достаточность. Пусть теперь указанное выше равенство выполняется только тогда, когда все числа [latex]\alpha_{1},…,\alpha_{n}[/latex] равны нулю. Предположим, однако, что система векторов [latex]S=<a_{1},a_{2},..,a_{n}>[/latex] линейно зависима. Это означает, что один из векторов [latex]a_{k}[/latex] линейно выражается через остальные, т.е.
и не все коэффициенты этой линейной комбинации равны нулю, что противоречит условию. Поэтому система векторов [latex]S=<a_{1},a_{2},..,a_{n}>[/latex] линейно независима.
Пример
Проверить является ли система [latex]S=<(1,0,0),(0,1,0),(0,0,1)>[/latex] линейно независимой.
Т.е. система [latex]S=<(1,0,0),(0,1,0),(0,0,1)>[/latex] линейно независима по критерию ЛНЗ.
Теорема (первый критерий ЛЗ)
Система [latex]S=<a_{1},a_{2},..,a_{n}>[/latex] линейно зависима тогда и только тогда, когда существует линейная комбинация [latex]\alpha_{1} a_{1}+\alpha_{2}a_{2}+…+\alpha_{n}a_{n}=0[/latex] с ненулевым набором коэффициентов.
Пример
Проверить является ли система [latex]S=<(1,0,0),(0,2,0),(1,2,0)>[/latex] линейно независимой.
При [latex]\alpha_{1}=1[/latex] и [latex]\alpha_{3}=-1[/latex] линейная комбинация равна нулю, т.е. система линейно зависима по первому критерию.
Теорема (второй критерий ЛЗ)
Векторы [latex]a_{1},a_{2},…,a_{n}[/latex] линейно зависимы тогда и только тогда, когда либо [latex]a_{1}=0[/latex], либо некоторый вектор [latex]a_{k}[/latex], [latex]2\leq k\leq n[/latex], является линейной комбинацией предшествующих векторов.
Доказательство
Предположим, что векторы [latex]a_{1},a_{2},…,a_{n}[/latex] линейно зависимы. Тогда в линейной комбинации, составленной из этих векторов не все коэффициенты равны нулю. Пусть последний ненулевой коэффициент есть [latex]\alpha_{k}[/latex]. Если [latex]k=1[/latex], то это означает, что [latex]a_{1}=0[/latex]. Пусть теперь [latex]k>1[/latex]. Тогда из равенства [latex]\alpha_{1} a_{1}+\alpha_{2}a_{2}+…+\alpha_{n}a_{n}=0[/latex] находим, что
Этим доказана необходимость утверждения, сформулированного в теореме. Достаточность очевидна, поскольку и случай, когда [latex]a_{1}=0[/latex], и случай, когда вектор [latex]a_{k}[/latex] линейно выражается через предшествующие векторы, означает линейную зависимость первых векторов из [latex]a_{1},a_{2},…,a_{n}[/latex]. Но отсюда следует линейная зависимость и всей системы векторов.
Пример
Проверить является ли система [latex]S=<(1,0,0),(0,2,0),(1,4,0)>[/latex] линейно независимой.
Данная система является линейно зависимой по второму критерию, т.к. третий вектор является линейной комбинацией первых двух:
[latex](1,4,0)=(1,0,0)+2\cdot(0,2,0)[/latex]
Литература
Конспект лекций по линейной алгебре. Белозёров Г.С.
Если существует линейная комбинация [latex]\alpha_{1}a_{1}+\alpha_{2}a_{2}+…+\alpha_{n}a_{n}=0[/latex] с ненулевым набором коэффициентов, то система [latex]S=<a_{1},a_{2},..,a_{n}>[/latex] …
Правильно
Неправильно
Подсказка
Закончить утверждение
Задание 3 из 4
3.
Какое условие является необходимым и достаточным во втором критерии линейной зависимости?