Лемма о степени суммы двух многочленов

Лемма. Степень суммы двух многочленов меньше либо равна наибольшей из степеней слагаемых.

Рассмотрим многочлены $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0},$$ $$s\left(x\right)=u\left(x\right)+v\left(x\right)=c_{p}x^{p}+c_{p-1}x^{p-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ где $p=\max\left(m,n\right).$ По определению суммы двух многочленов, коэффициенты $s\left(x\right)$ равны $$c_{i}=a_{i}+b_{i},\; \left(i = 0, 1, \ldots, p-1, p\right).$$ Рассмотрим коэффициент многочлена $s\left(x\right)$ при $x^{p}:$ $$c_{p}=a_{n}+b_{m},$$ если они существуют, т.е. если $n=m.$ Если же $n>m,$ то $c_{p}=a_{n}.$ Иначе, $n<m$ и $c_{p}=b_{m}.$ Таким образом, степень $s\left(x\right)$ не будет больше $\max\left(m,n\right).$ В случае же $m=n$ и $a_{n}=-b_{m},$ $c_{p}=0$ и степень $s\left(x\right)<p.$

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Какой степени будет сумма $u\left(x\right)+v\left(x\right),$ если: $$u\left(x\right)=10x^7+26x^6+46x^5+56x^4+114x^3+80x^2+48x+70,$$ $$v\left(x\right)=7x^7+19x^6+39x^5+185x^4+193x^3+81x^2+56x+20?$$
    Решение

    Воспользуемся леммой. Пусть $s\left(x\right)=u\left(x\right)+v\left(x\right).$ Поскольку $\deg\left(v\left(x\right)\right)=\deg\left(u\left(x\right)\right)=7,$ коэффициент многочлена $s\left(x\right)$ при $x^{7}$ равен $c_{7}=10+7=17\neq 0.$ Следовательно, $\deg\left(s\left(x\right)\right)=7.$

  2. Определить степень суммы многочленов $u\left(x\right)+v\left(x\right),$ если: $$u\left(x\right)=45x^7-47x^6-x^5-140x^4+10x^3+13x^2+24x+12,$$ $$v\left(x\right)=-45x^7+47x^6+x^5+27x^4+12x^3+6x^2+2x+21.$$
    Решение

    Воспользуемся леммой. Пусть $s\left(x\right)=u\left(x\right)+v\left(x\right),$ коэффициенты $u\left(x\right),$ $v\left(x\right),$ $s\left(x\right)$ равны $a_{i},$ $b_{i},$ $c_{i}$ соответственно. Аналогично предыдущему случаю, $\deg\left(v\left(x\right)\right)=\deg\left(u\left(x\right)\right)=7.$ Рассмотрим коэффициенты $s\left(x\right):$ $$c_{7}=a_{7}+b_{7}=45+\left(-45\right)=0.$$ Значит, $\deg\left(s\left(x\right)\right)<7.$ $$c_{6}=a_{6}+b_{6}=-47+47=0,$$ $$c_{5}=a_{5}+b_{5}=-1+1=0,$$ $$c_{4}=a_{4}+b_{4}=-140+27=-113\neq 0.$$ Значит, $\deg\left(s\left(x\right)\right)=4.$

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва:Наука, 1968. — 431с. (c. 132)
  2. Р.Галлагер Теория информации и надежная связь. -М.:»Советское радио», 1974. — 720с. (c. 232-233)
  3. Белозёров Г.С. Конспект лекций.

Лемма о степени суммы двух многочленов

Этот тест призван проверить Ваши знания по теме «Лемма о степени суммы двух многочленов».

Теорема об аддитивной группе многочленов

Теорема. Пусть $P\left[x\right]$ — множество многочленов над полем от переменной $x,$ $+$ — операция сложения многочленов. Тогда $\left( P\left[x\right],+ \right)$ — абелева группа.

Очевидно, $P\left[x\right]\neq \varnothing,$ $+$ — БАО. Проверим выполнение аксиом абелевой группы:

  1. Ассоциативность операции: $$\forall u\left(x\right),v\left(x\right),w\left(x\right) \in P\left[x\right]: \left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right).$$ Как известно, операция сложения многочленов обладает ассоциативностью.
  2. Коммутативность операции: $$\forall u\left(x\right),v\left(x\right) \in P\left[x\right]:u\left(x\right)+v\left(x\right)=v\left(x\right)+u\left(x\right).$$ Сложение многочленов также обладает и коммутативностью.
  3. Покажем что существует нейтральный элемент по сложению, а именно: $$\exists e \in P\left[x\right]\; \forall u\left(x\right) \in P\left[x\right]: u\left(x\right)+e=e+u\left(x\right)=u\left(x\right).$$ Таким элементом выступает число $0,$ которое можно рассматривать как одночлен, или как многочлен с коэффициентами равными нулю. Из определения сложения многочленов, сложение с ним не изменит коэффициенты исходного многочлена, т.к. $0$ является нейтральным элементом для сложения чисел.
  4. Наконец, покажем существование противоположного элемента: $$\forall u\left(x\right) \in P\left[x\right]\; \exists -u\left(x\right)\in P\left[x\right]: u\left(x\right)+\left(-u\left(x\right)\right)=-u\left(x\right)+u\left(x\right)=e=0.$$ Получить такой элемент для любого многочлена можно просто заменив все его коэффициенты на противоположные (простыми словами — поменяв их знаки). Суммой таких многочленов, в силу противоположности их коэффициентов как чисел, будет многочлен, все коэффициенты которого равны нулю, или просто $0.$

Итак, все аксиомы выполняются, следовательно $\left( P\left[x\right],+ \right)$ — абелева группа.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Является ли $\left( P^3\left[x\right],+ \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, абелевой группой?
    Решение

    Очевидно, операция сложения многочленов сохраняет все свои свойства на этом множестве, а нейтральный и противоположный элементы ему принадлежат $\Rightarrow$ все аксиомы выполняются. Также, $+$ остается БАО, а $P^3\left[x\right]\neq \varnothing.$ Значит, ответ положительный.

  2. Является ли $\left( P^3\left[x\right],\cdot \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, а $\cdot$ — операция умножения многочленов, абелевой группой?
    Решение

    Аналогично первому примеру, $P^3\left[x\right]\neq \varnothing.$ Однако, в случае умножения, произведением двух многочленов $3$-й степени будет многочлен $6$-й степени (по лемме о степени произведения), что выходит за границы рассматриваемого множества. Значит, $\left( P^3\left[x\right],\cdot \right)$ — не абелева группа.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 132-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Аддитивная группа многочленов

Этот тест призван проверить Ваши знания по теме «Аддитивная группа многочленов».

Операции над многочленами

Сложение многочленов

Определение. Пусть даны многочлены $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0}.$$ Будем считать, что $n\geqslant m.$ Тогда их суммой является многочлен $$s\left(x\right)=u\left(x\right)+v\left(x\right)=c_{n}x^{n}+c_{n-1}x^{n-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ каждый коэффициент $c_{i}$ которого получается сложением соответствующих коэффициентов $a_{i}$ и $b_{i},$ $\left(i = 0, 1, \ldots, n-1, n\right).$ Причём, если $n\geqslant i>m,$ то считаем, что $b_{i}=0.$

Замечание. Можно определить и вычитание многочленов, как сложение с противоположным. «Нулём» будет выступать нулевой многочлен $\left(0\right),$ а противоположный данному многочлен получается заменой всех коэффициентов на противоположные: $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$-u\left(x\right)=-a_{n}x^{n}-a_{n-1}x^{n-1}-\ldots-a_{2}x^{2}-a_{1}x-a_{0}.$$

Основные свойства сложения

1. Степень суммы. Степень суммы двух многочленов меньше либо равна наибольшей из степеней слагаемых. (Лемма)

2. Коммутативность: $u\left(x\right)+v\left(x\right)=v\left(x\right)+u\left(x\right).$

Пусть $$u\left(x\right)+v\left(x\right)=s_{1}\left(x\right),\; v\left(x\right)+u\left(x\right)=s_{2}\left(x\right).$$ Рассмотрим коэффициенты $s_{1}\left(x\right)$ и $s_{2}\left(x\right).$ Они равны в силу коммутативности сложения чисел $\left(a_{i}+b_{i}=b_{i}+a_{i}\right),$ а значит, $s_{1}\left(x\right)=s_{2}\left(x\right),$ что доказывает коммутативность сложения многочленов.

3. Ассоциативность: $\left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right).$

Пусть коэффициенты $u\left(x\right),$ $v\left(x\right)$ и $w\left(x\right)$ равны $a_{i},$ $b_{i},$ и $c_{i}$ соответственно. Зададим их суммы: $$\left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=f\left(x\right),$$ $$u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right)=g\left(x\right).$$ Для доказательства ассоциативности, докажем равенство $f\left(x\right)$ и $g\left(x\right).$ Рассмотрим общие формулы их коэффициентов: $$f_{i}=\left(a_{i}+b_{i}\right)+c_{i},$$ $$g_{i}=a_{i}+\left(b_{i}+c_{i}\right).$$ Аналогично коммутативности, равенство этих двух многочленов следует из ассоциативности операции сложения для чисел, из чего и следует ассоциативность сложения многочленов.

Умножение многочленов

Определение. Пусть даны многочлены $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0}.$$ Тогда их произведением является многочлен $$p\left(x\right)=u\left(x\right)\cdot v\left(x\right)=c_{n+m}x^{n+m}+c_{n+m-1}x^{n+m-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ образующийся в результате простого умножения $u\left(x\right)\cdot v\left(x\right)$ и приведения подобных членов. Таким образом, каждый коэффициент произведения $$\displaystyle c_{i}=\sum_{\alpha+\beta=i}^{}a_{\alpha}b_{\beta},\; \left(i = 0, 1, \ldots, n+m-1, n+m\right).$$

Замечание. Для многочленов операция обратная умножению (деление) не определена. Однако, существует алгоритм деления с остатком.

Основные свойства умножения

1. Степень произведения. Степень произведения двух многочленов равна сумме степеней множителей. (Лемма)

2. Коммутативность: $u\left(x\right)\cdot v\left(x\right)=v\left(x\right)\cdot u\left(x\right).$

Рассмотрим многочлены $u\left(x\right)$ и $v\left(x\right)$ из определения произведения. Пусть $$f\left(x\right)=u\left(x\right)\cdot v\left(x\right)=c_{n+m}x^{n+m}+c_{n+m-1}x^{n+m-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0},$$ $$g\left(x\right)=v\left(x\right)\cdot u\left(x\right)=d_{n+m}x^{n+m}+d_{n+m-1}x^{n+m-1}+\ldots+d_{2}x^{2}+d_{1}x+d_{0}.$$ Тогда, коэффициенты многочлена $f\left(x\right)$ равны $\displaystyle c_{i}=\sum_{\alpha+\beta=i}^{}a_{\alpha}b_{\beta},$ а многочлена $g\left(x\right)$ — $\displaystyle d_{i}=\sum_{\alpha+\beta=i}^{}b_{\beta}a_{\alpha}.$ Из очевидного равенства этих сумм вытекает равенство $f\left(x\right)$ и $g\left(x\right),$ а значит, $u\left(x\right)\cdot v\left(x\right)=v\left(x\right)\cdot u\left(x\right)$ и коммутативность доказана.

3. Ассоциативность: $\left(u\left(x\right)\cdot v\left(x\right)\right)\cdot w\left(x\right)=u\left(x\right)\cdot \left(v\left(x\right)\cdot w\left(x\right)\right).$

Пусть коэффициенты $u\left(x\right),$ $v\left(x\right)$ и $w\left(x\right)$ равны $a_{i},$ $b_{i},$ и $c_{i}$ соответственно, а именно: $$u\left(x\right)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{2}x^{2}+a_{1}x+a_{0},$$ $$v\left(x\right)=b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots+b_{2}x^{2}+b_{1}x+b_{0},$$ $$w\left(x\right)=c_{s}x^{s}+c_{s-1}x^{s-1}+\ldots+c_{2}x^{2}+c_{1}x+c_{0}.$$ Теперь, зададим их произведения в нужном порядке: $$f\left(x\right)=u\left(x\right)\cdot v\left(x\right)=d_{n+m}x^{n+m}+d_{n+m-1}x^{n+m-1}+\ldots+d_{2}x^{2}+d_{1}x+d_{0},$$ $$g\left(x\right)=v\left(x\right)\cdot w\left(x\right)=r_{m+s}x^{m+s}+r_{m+s-1}x^{m+s-1}+\ldots+r_{2}x^{2}+r_{1}x+r_{0},$$ $$h\left(x\right)=\left(u\left(x\right)\cdot v\left(x\right)\right)\cdot w\left(x\right)=k_{n+m+s}x^{n+m+s}+\ldots+k_{2}x^{2}+k_{1}x+k_{0},$$ $$l\left(x\right)=u\left(x\right)\cdot \left(v\left(x\right)\cdot w\left(x\right)\right)=p_{n+m+s}x^{n+m+s}+\ldots+p_{2}x^{2}+p_{1}x+p_{0}.$$ Для доказательства ассоциативности, докажем равенство многочленов $h\left(x\right)$ и $l\left(x\right).$ Рассмотрим общую формулу коэффициента $h\left(x\right):$ $$\displaystyle k_{i}=\sum_{q+\gamma =i}d_{q}c_{\gamma }=\sum_{q+\gamma =i}\left( \sum_{\alpha +\beta =q}^{}\left(a_{\alpha }b_{\beta }\right)\cdot c_{\gamma }\right) = \sum_{\alpha +\beta +\gamma=i}a_{\alpha }b_{\beta }c_{\gamma }.$$ Теперь покажем, что общую формулу коэффициента $l\left(x\right)$ можно привести к такому же виду: $$\displaystyle p_{i}=\sum_{\alpha+q=i}a_{\alpha}r_{q}=\sum_{\alpha+q=i}\left( a_{\alpha}\cdot \sum_{\beta+\gamma=q}b_{\beta}c_{\gamma} \right)= \sum_{\alpha +\beta +\gamma=i}a_{\alpha }b_{\beta }c_{\gamma }.$$ Из равенства коэффициентов следует равенство многочленов, что и доказывает ассоциативность.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Сложить многочлены $3x^4+2x^3-4x^2-8x+10$ и $8x^3-4x^2-9x-10.$

    Решение

    Воспользуемся определением суммы многочленов: $$\left(3x^4+2x^3-4x^2-8x+10\right)+\left(8x^3-4x^2-9x-10\right)=$$ $$=\left(3+0\right)x^4+\left(2+8\right)x^3+\left(-4+\left(-4\right)\right)x^2+\left(-8+\left(-9\right)\right)x+\left(10-10\right)=$$ $$=3x^4+10x^3-8x^2-17x.$$

  2. Найти разность $7x^7+10x^6-20x^5+10x^4-13x^3+8x^2+11x+19$ и $5x^7-10x^5+7x^4+x^3+11x^2+20x+11.$

    Решение

    Сложим первый многочлен с противоположным второму: $$7x^7+10x^6-20x^5+10x^4-13x^3+8x^2+11x+19 +$$ $$+\left(-5x^7+10x^5-7x^4-x^3-11x^2-20x-11\right)=$$ $$=\left(7-5\right)x^7+\left(10+0\right)x^6+\left(-20+10\right)x^5+\left(10-7\right)x^4+$$ $$+\left(-13-1\right)x^3+\left(8-11\right)x^2+\left(11-20\right)x+\left(19-11\right)=$$ $$=2x^7+10x^6-10x^5+3x^4-14x^3-3x^2-9x+8.$$

  3. Найти произведение $2x^2+5x-1$ и $4x^2-x+3.$

    Решение

    Умножим два многочлена и приведём подобные: $$\left(2x^2+5x-1\right)\cdot \left(4x^2-x+3\right)=$$ $$=8x^4-2x^3+6x^2+20x^3-5x^2+15x-4x^2+x-3=$$ $$=8x^4+\left(20-2\right)x^3+\left(6-5-4\right)x^2+\left(15+1\right)x-3=$$ $$=8x^4+18x^3-3x^2+16x-3.$$

  4. Найти произведение $-3x^2+7x+9$ и $6x^2+2x+8.$

    Решение

    На этот раз, воспользуемся общей формулой коэффициента из определения произведения многочленов. Тогда: $$u\left(x\right)=-3x^2+7x+9,\;a_{2}=-3,a_{1}=7,a_{0}=9,$$ $$v\left(x\right)=6x^2+2x+8,\;b_{2}=6,b_{1}=2,b_{0}=8,$$ $$p\left(x\right)=u\left(x\right)\cdot v\left(x\right)=c_{4}x^4+c_{3}x^3+c_{2}x^2+c_{1}x+c_{0}.$$ По определению, $\displaystyle c_{i}=\sum_{\alpha+\beta=i}^{}a_{\alpha}b_{\beta},$ $\left(i=0,1,2,3,4\right).$ Вычислим их. $$c_{0}=\sum_{\alpha+\beta=0}^{}a_{\alpha}b_{\beta}=a_{0}b_{0}=9\cdot 8=72,$$ $$c_{1}=\sum_{\alpha+\beta=1}^{}a_{\alpha}b_{\beta}=a_{0}b_{1}+a_{1}b_{0}=9\cdot 2 + 7\cdot 8=74,$$ $$c_{2}=\sum_{\alpha+\beta=2}^{}a_{\alpha}b_{\beta}=a_{0}b_{2}+a_{1}b_{1}+a_{2}b_{0}=9\cdot 6+7\cdot 2+\left(-3\right)\cdot 8=44,$$ $$c_{3}=\sum_{\alpha+\beta=3}^{}a_{\alpha}b_{\beta}=a_{1}b_{2}+a_{2}b_{1}=7\cdot 6+\left(-3\right)\cdot 2=36,$$ $$c_{4}=\sum_{\alpha+\beta=4}^{}a_{\alpha}b_{\beta}=a_{2}b_{2}=-3\cdot 6=-18.$$ Имеем: $$p\left(x\right)=u\left(x\right)\cdot v\left(x\right)=-18x^4+36x^3+44x^2+74x+72.$$

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 130-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Операции над многочленами

Этот тест призван проверить Ваши знания по теме «Операции над многочленами».

М658. О разбиении квадрата отрезками

Задача из журнала «Квант» (1980 год, 12 выпуск)

Условие

В квадрате со сторо­ной $1$ проведено конечное чис­ло отрезков (рис. $1$), парал­лельных его сторонам. Отрез­ки могут пересекать друг друга. Сумма длин проведен­ных отрезков равна $18$. Дока­жите. что среди частей, на которые квадрат разбивается этими отрезками, найдется такая, площадь которой не меньше $0.01$

Решение

Сумма длин границ всех частей, на которые квадрат разбит отрезками, равна $2 \cdot 18+4=40 $ (длины проведенных отрезков входят в эту сумму по два раза, длины сторон квадрата — по одному). Пусть для $i$-й части сумма длин горизонтальных границ равна $x _{i}$, вертикальных — $2y_{i}$, а площадь $i$-й части равна $c_{i}^{2}$ $\left( c_{i} > 0 \right)$ : тогда $x _{i}y_{i} \geq c_{i}^{2}$ (рис. $2$), поэтому $x_{i}+y_{i}\geq2\sqrt{ x_{i}y_{i}} \geq 2c_{i}$. Итак, $40= \sum (2x_{i}+2y_{i})\geq4 \sum c_{i}$, откуда $ \sum c_{i}\leq10$ (здесь сумма $\sum$ берется но всем частям разбиении).

Если $c_{i}^{2}<0.01$ (то есть $c_{i}<0.1$) для всех $i$, то $1= \sum c_{i}^{2} < \sum 0.1 c_{i} = 0.1 \sum c_{i}$ , откуда $\sum c_{i}\geq10$. Противоречие. Очевидно, оценка $18$ — точная: восемнадцатью отрезками длины $1$ наш квадрат можно разбить на $100$ одинаковых квадратиков площади $0.01$ каждый.

А.Анджан

М1743. Сумма

Задача из журнала «Квант» (2000 год, 5 выпуск)


Условие задачи

Найдите сумму $$\displaystyle \left [
\frac{1}{3}
\right ] + \left [
\frac{2}{3}
\right ] + \left [
\frac{2^{2}}{3}
\right ] + \cdots +\left [
\frac{2^{1000}}{3}
\right ]$$
$(\left[ a \right]$ — целая часть числа $a)$

Решение

Достаточно найти сумму дробных частей $$\displaystyle s_{1} = \left\{
\frac{1}{3}
\right\} + \left\{
\frac{2}{3}
\right\} + \left\{
\frac{2^{2}}{3}
\right\} + \cdots +\left\{
\frac{2^{1000}}{3}
\right\}.$$
Имеем: $$\displaystyle \left\{
\frac{1}{3}
\right\} = \frac{1}{3}, \left\{
\frac{2}{3}
\right\} = \frac{2}{3}, \left\{
\frac{4}{3}
\right\} = \frac{1}{3}, \left\{
\frac{8}{3} \right\} = \frac{2}{3}, \cdots$$
Следовательно, $\displaystyle s_{1} = 501 \cdot \frac{1}{3} + 500 \cdot \frac{2}{3} = 500\tfrac{2}{3}.$
Далее, $$s = \frac{1}{3} + \frac{2}{3} + \cdots + \frac{2^{1000}}{3} = \frac{1}{3}(2^{1001} — 1).$$
Получили: $\displaystyle s_{2} = \left [
\frac{1}{3}
\right ] + \left [
\frac{2}{3}
\right ] + \left [
\frac{2^{2}}{3}
\right ] + \cdots +\left [
\frac{2^{1000}}{3}
\right ] = s — s_{1} = \frac{1}{3}(2^{1001} — 2) — 500.$

Ответ: $\displaystyle \frac{2^{1001} — 2}{3} — 500.$

А.Голованов, В.Сендеров