М605. Задача о преобразовании плоскости

Условие

На плоскости отмечены $2n + 1$ различных точек. Занумеруем их числами $1, 2, \ldots, 2n + 1$ и рассмотрим следующее преобразование $R$ плоскости: сначала делается симметрия относительно первой точки, затем относительно второй и т. д. — до $\left(2n + 1\right)$-й точки.

а) Покажите, что y этого преобразования $R$ есть единственная «неподвижная точка» (точка, которая отображается в себя).

Рассмотрим всевозможные способы нумерации наших $2n + 1$ точек (числами $1, 2, \ldots, 2n + 1$). Каждой такой нумерации соответствует свое преобразование плоскости $R$ и своя неподвижная точка. Пусть $F$ — множество неподвижных точек всех этих преобразований.

б) Укажите множество $F$ для $n = 1$.

в) Какое максимальное и какое минимальное количество точек может содержать множество $F$ при каждом $n = 2, 3, \ldots$

Решение

Фиксируем произвольную систему координат.

Пусть точки $A\left(x; y\right)$ и $A^*\left(x^*; y^*\right)$ симметричны относительно точки $A’\left(x’; y’\right)$. Тогда $x’ = \frac{\left(x + x^*\right)}{2}, y’ = \frac{\left(y + y^*\right)}{2},$ откуда $$x^* = 2x’ — x, y^* = 2y’ — y.$$

Таким образом, точка с координатами $\left(x; y\right)$ при симметрии относительно точки с координатами $\left(x’; y’\right)$ переходит в точку с координатами $\left(2x’ — x; 2y’ — y\right)$.

Поэтому при нашем преобразовании $R$ точка с координатами $\left(x; y\right)$ перейдет в точку с координатами $\left(-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1}; -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1}\right),$ где $\left(x_i; y_i\right)$ — координаты $i$-й из заданных $2n + 1$ точек.

a) Для неподвижной точки $\left(x; y\right)$ преобразования $R$ эти координаты определяются однозначно из условия $$ \begin{cases}-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1} = x \\ -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1} = y\end{cases}$$ и равны $\left(x_1 — x_2 + \cdots — x_{2n} + x_{2n + 1}; y_1 — y_2 + \cdots — y_{2n} + y_{2n + 1}\right)$ или $$\left(\sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} x_i; \sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} y_i\right) \tag{*}$$ Утверждение a) доказано.

б) Пусть сначала данные точки $X_1, X_2, X_3$ не лежат на одной прямой. Если точка $A_1$ после симметрии относительно точек $X_1, X_2, X_3$ отобразилась в себя (см. рисунок), то $X_1, X_2, X_3$ — середины отрезков $A_1A_2, A_2A_3, A_3A_1$, где $A_2 = SX_1\left(A_1\right)$, $A_3 = SX_2\left(A_2\right)$. Значит, $\left[A_1A_2\right]$, $\left[A_2A_3\right]$, $\left[A_3A_1\right]$ — медианы треугольника $A_1A_2A_3$, так что точки $A_1, A_2, A_3$ можно получить из точек $X_1, X_2, X_3$ гомотетией с центром в центре тяжести $O$ треугольника $X_1X_2X_3$ и коэффициентом $(—2)$. Этим положение точек $A_i \left(i = 1, 2, 3\right)$ определяется однозначно. С другой стороны, каждая точка $A_i$ при соответствующей композиции симметрий относительно точек $X_i$, отображается в себя (например, $SX_2\left(SX_1\left(SX_3\left(A_3\right)\right)\right) = A_3$). Поэтому множество $F$ — это три точки, получающиеся из данных точек $X_1, X_2, X_3$ гомотетией с центром $O$ и коэффициентом $(-2)$. Легко видеть, что, если данные точки $X_1, X_2, X_3$ лежат на прямой, ответ получается, в разумном смысле, тот же.

в) Глядя на выражение $(*)$, нетрудно сообразить, что в множестве $F$ точек не больше, чем число способов выбрать из $2n + 1$ данных точек те $n$ точек, перед абсциссами которых в выражении $(*)$ будет стоять знак «минус», то есть не больше, чем $C^n_{2n + 1}$. Очевидно, эта оценка точна (возьмите, например, $2n + 1$ точек на одной прямой с целыми координатами $1, 2, 2^2, \ldots, 2^{2n}$).

Оценим теперь число неподвижных точек снизу. Спроектируем данные $2n + 1$ точек на прямую так, чтобы никакие две точки не попали в одну. На этой прямой введем координаты и перенумеруем точки в порядке возрастания координат: $x_1 < x_2 < \ldots < x_{2n + 1}$. Поставим $n$ минусов перед первыми $n$ числами и рассмотрим сумму $- x_1 — x_2 — \cdots — x_n + x_{n + 1} + \cdots + x_{2n + 1}$: она будет соответствовать некоторой неподвижной точке из нашего множества $F$. Далее произведем следующую операцию: выберем пару чисел $x_i$ и $x_{i + 1}$ таких, что перед $x_i$ стоит минус, а перед $x_{i + 1}$ — плюс, и поменяем у них знаки (на первом шаге, очевидно, $i = n$). Каждая такая операция приводит к сумме, соответствующей неподвижной точке из множества $F$, причем, поскольку после каждой такой операции сумма уменьшатся, все эти неподвижные точки различны. Всего таких операций (вне зависимости от их порядка) мы можем произвести $n\left(n + 1\right)$, что уже даст нам $n\left(n + 1\right) + 1$ неподвижных точек. Значит, в $F$ точек не меньше $n\left(n + 1\right) + 1$. Ровно столько неподвижных точек получится, если, например, снова взять $2n + 1$ точек на прямой с целыми координатами $-n, -\left(n — 1\right), \ldots, -1, 0, 1, 2, \ldots, n — 1, n$. При всевозможных способах расстановки $n$ «минусов» перед некоторыми из них максимальное значение суммы этих чисел равно $2 \cdot \left(1 + 2 + \cdots + n\right) = n(n + 1)$, минимальное значение равно $-n\left(n + 1\right)$, причем сумма может принимать любое четное значение между числами $-n\left(n + 1\right)$ и $n\left(n + 1\right)$ — всего $n\left(n + 1\right) + 1$ значений.

И. Клумова, А. Талалай

M1767. Внутри квадрата

Задачa из журнала «Квант» (2001 год, 2 выпуск)

Условие

Внутри квадрата $ABCD$ расположены точки $P$ и $Q$ так, что $\angle PAQ = \angle PCQ = 45 ^{\circ}$ (рис.1). Докажите, что $PQ^{2} = BP^{2} + QD^{2}$.

Решение

Симметрично отразим $\triangle APB $ относительно прямой $AP$, a $\triangle AQD $ — относительно прямой $AQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $M$ (рис.2). Затем симметрично отразим $\triangle CPB $ относительно прямой $CP$, а треугольник $CQD$ — относительно прямой $CQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $N$.

Заметим, что $\angle PMQ + \angle QNP = 180^{\circ}$, но так как треугольники $PMQ$ и $QNP$ равны, то $\angle PMQ = \angle QNP$, т.е. $\angle PMQ = 90^{\circ}$.

Значит, треугольник $PMQ$ прямоугольный и $PM^{2} + QM^{2} = PQ^{2}$. Но $PM = BP$, а $QM = QD$, поэтому окончательно можно утверждать, что $PB^{2} + QD^{2} = PQ^{2}$.

В. Произволов

М1633. Биссектрисы

Задача из журнала «Квант» (1998 год, 2 выпуск)


Условие задачи

В треугольнике $ABC$ отрезки $CM$ и $BN$ – медианы, $P$ и $Q$  – точки соответственно на $AB$ и $AC$ такие, что биссектриса угла $C$ треугольника одновременно является биссектрисой угла $MCP$, а биссектриса угла $B$ – биссектрисой угла $NBQ$. Можно ли утверждать, что треугольник $ABC$ равнобедренный, если
а) $BP = CQ$;
б) $AP = AQ$;
в) $PQ || BC$;
Отрезки $BQ$ и $CP$ называются симедианами.

Решение

Теорема

$AB = c$, $AC = b$, $AS$ – симедиана. Тогда $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

Пусть $AM$ – медиана; обозначим $\alpha = \angle BAS = \angle CAM$, $\angle MAS = \beta$ (рис.1).
Имеем: $\displaystyle \frac{BS}{SC}=\frac{S_{ABS}}{S_{ASC}} = \frac{c\sin\alpha }{b(\sin\alpha +\beta)}$, $\displaystyle 1 = \frac{S_{ABM}}{S_{AMC}} = \frac{c\sin(\alpha + \beta)}{b\sin \alpha}$.
Значит, $\displaystyle \frac{BS}{SC}=\frac{c^{2}}{b^{2}}$.

а) Да. Перепишем равенство $BP = CQ$, пользуясь теоремой:$$b^{3} + ba^{2} = c^{3} + ca^{2}.$$
Поскольку $f(x)= x^{3}+xa^{2}$ – монотонная функция, получаем, что $b=c$.
К этому равенству можно прийти и так: $b^{3}-c^{3} = a^{2}(c-b);$ значит, при $b\neq c$ будет $b^{2} + bc + c^{2} = -a^{2};$ но $b^{2} + bc + c^{2} \geqslant 0.$
в) Да. $\displaystyle \frac{AQ}{QC}=\frac{AP}{PB}$, т.е. $\displaystyle \frac{c^{2}}{a^{2}}=\frac{b^{2}}{a^{2}}.$

б) Нет. $\displaystyle AP = c \cdot \frac{b^{2}}{b^{2} + a^{2}}$, $\displaystyle AQ = b \cdot \frac{c^{2}}{c^{2} + a^{2}}$.
Перепишем $AP = AQ: bc(b — c) = a^{2}(b — c)$. Значит, в неравнобедренном треугольнике таком, что $a^{2} = bc$, имеем $AP = AQ$.

  1. Если A – наибольший или наименьший угол треугольника, $AP = AQ$, то треугольник равнобедренный.
  2. Неравнобедренный треугольник такой, что $AP = AQ$ – это треугольник со сторонами вида $d, dq, dq^{2}$, где $q \neq 1$.
  3. Пункт б) (именно он предлагался на Турнире городов) можно решить и без помощи теоремы, пользуясь лишь соображениями непрерывности. Это можно сделать по такой, например, схеме.
    Пусть для треугольника $ABC$ будет $AP > AQ$, а для треугольника $ {A}'{B}'{C}’$ ${AP}’ < {AQ}’$. «Перетянем» $A$ в ${A}’$, $B$ в ${B}’$, $C$ в ${C}’$; по дороге нам встретится треугольник $A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$ такой, что $A^{\prime\prime}P^{\prime\prime} = A^{\prime\prime}Q^{\prime\prime}$. Если возникающие при этом «перетягивании» треугольники не являются равнобедренными, то задача решена.

Приведем пример реализации этой схемы.
Рассмотрим треугольник рисунка 2:

$$\displaystyle AB = 1, \angle A = \frac{\pi}{3}, \angle B = \frac{\pi}{2};$$ $CD$– биссектриса.
Так как $\displaystyle \frac{AD}{BD} = \frac{AC}{BC}$, то $\displaystyle AD > \frac{1}{2}$: следовательно, $\displaystyle AP > \frac{1}{2}.$
Далее, $\displaystyle \angle ABQ = \angle NBC = \frac{\pi}{6}$; значит, $\displaystyle AQ = \frac{1}{2}$.

Рассмотрим теперь треугольник рисунка 3:
$$\angle A = \frac{\pi}{4}, \angle B = \frac{\pi}{2}, BC = 1.$$ Имеем: $\displaystyle AQ = \frac{\sqrt{2}}{2}$; обозначим через G точку пересечения медиан, из подобных треугольников $CQG$ и $CBP$ получаем $\displaystyle \frac{BP}{BC} = \frac{GQ}{QC} = \frac{GQ}{BQ} = \frac{1}{3}$. Окончательно: $\displaystyle AP = 1 – BP = \frac{2}{3} < \frac{\sqrt{2}}{2} = AQ$.

В. Сендеров

М1759. Остроугольный прямоугольник

Задача из журнала «Квант» (2001 год, 4 выпуск)

Условие

Имеется остроугольный треугольник с меньшей стороной $c$ и противолежащим ей углом $\gamma$ . Известно, что треугольник можно раскрасить в два цвета так, что расстояние между любыми двумя точками одного цвета будет не больше $с$. Докажите, что $\gamma \geqslant 36^\circ$.

Решение

Рисунок к задачеРассмотрим треугольник $ABC$ с длинами сторон $AB=c$, $BC=a$, $CA=b$, причём $a \geqslant b \geqslant c$; углы при вершинах $A$, $B$ и $C$ обозначим соответственно через $\alpha$, $\beta$ и $\gamma$.

Пусть точка $K$ — середина стороны $BC$, точка $A_1$ — пересечение серединного перпендикуляра к $BC$ и стороны $AC$ (см. рисунок).

Из условия задачи следует, что в указанной раскраске вершины $B$ и $C$ должны быть разного цвета, поскольку расстояние между ними больше $c$ (если оно равно $c$, то треугольник равносторонний, и для него утверждение задачи выполняется). Значит, точка $A_1$ должна иметь одинаковый цвет с одной из точек $B$ или $C$.

В любом случае должно выполняться неравенство $AB \geqslant A_1C$, которое равносильно следующим неравенствам:
$$c \geqslant \frac{a}{2\cos\gamma}\;;\;\frac{\sin\gamma}{\sin\alpha}\geqslant\frac{1}{2\cos\gamma};$$
$$\sin2\gamma \geqslant \sin\alpha\;;\;\alpha \leqslant 2\gamma \leqslant \pi-\alpha$$
Учитывая, что $2\gamma \leqslant \beta+\gamma=\pi-\alpha$, имеем: $AB \geqslant A_1C \Leftrightarrow \alpha \leqslant 2\gamma .$

Завершаем доказательство:
$$180^\circ = \alpha+\beta+\gamma \leqslant 2\gamma+2\gamma+\gamma=5\gamma \Rightarrow \gamma \geqslant 36^\circ .$$

А.Эвнин

М1730. Выпуклый четырехугольник

Задача из журнала «Квант» (2000 год, 6 выпуск)

Условие задачи

Продолжения противоположных сторон произвольного выпуклого четырехугольника ABCD пересекаются в точках M и K  $(рис.1)$. Через точку O пересечения его диагоналей проводится прямая, параллельная MK. Докажите, что отрезок этой прямой, заключенный внутри четырехугольника, делится точкой  O пополам.

Решение

Проведем  через точку D прямую l (сделайте чертеж самостоятельно), параллельную KM; пусть  E и F — точки пересечения l с прямыми BC и BA соответственно.  Пусть для определенности прямая, проходящая через O параллельно KM и l пересекает стороны AB и CD четырехугольника. В этом случае для решения задачи надо доказать, что точка O лежит на медиане KL треугольника DKF. Мы докажем, что O — точка пересечения медиан KL и MN треугольников DKF и DME соответственно. Обозначим точку пересечения медиан KL и MN через X.

Докажем вначале, что X лежит на BD, т. е. что прямые DX и BD совпадают. Для этого докажем, что они делят отрезок KM в одном и том же соотношении.

Пусть  Y — точка пересечения DX и KM. Имеем \frac {\displaystyle KY}{ \displaystyle LD} = \frac{\displaystyle XY}{\displaystyle DX} (поскольку треугольники XYK и XDL подобны), \frac{ \displaystyle MY}{\displaystyle DN}\ = \frac{\displaystyle XY}{\displaystyle DX}\. Поэтому \frac{\displaystyle KY}{\displaystyle MY}\ = \frac{\displaystyle LD}{\displaystyle DN}\. Аналогично доказывается, что BD делит KM в отношении \frac{\displaystyle FD}{\displaystyle DE}\. Но FD = 2LD, DE = 2DN.

Осталось доказать, что X лежит на отрезке AC. Другими словами, что KL и MN делят отрезок AC в одном и том же отношении.

Лемма 1.
\frac{\displaystyle VS}{\displaystyle BV}\ = \frac{\displaystyle AS}{\displaystyle AC}\, где S — точка на стороне AC треугольника ABC, V — точка пересечения прямой BS с медианой AN этого треугольника.

Рассмотрим точку T отрезка BC такую, что ST || AN. Из теоремы Фалеса следует, что \frac{\displaystyle VS}{\displaystyle BV}\ = \frac{\displaystyle NT}{\displaystyle BN}\ = \frac{\displaystyle NT}{\displaystyle NC}\ = \frac{\displaystyle AS}{\displaystyle AC}\ .

Лемма 2.
\frac{\displaystyle VS}{\displaystyle UV} = \left(\frac{\displaystyle AS}{\displaystyle AU}\right) \cdot \left (\frac{\displaystyle AB}{\displaystyle AC} \right ), где U и S — точки на сторонах AB и AC треугольника ABC соответственно, а V — точка пересечения прямой US с медианой AN этого треугольника.

На стороне AC возьмем точку Z такую, что UZ || BC.  По лемме 1 имеем \frac{\displaystyle VS}{\displaystyle UV}\ = \frac{\displaystyle AS}{\displaystyle AZ}\, а по теореме Фалеса \frac{\displaystyle AC}{\displaystyle AB}\ = \frac{\displaystyle AZ}{\displaystyle AU}\. Осталось перемножить эти равенства.

Доказанные утверждения позволяют завершить решение задачи. Именно, по лемме 2 медиана KL делит отрезок AC (считая от C)  в отношении m = \left(\frac{\displaystyle CK}{\displaystyle KD}\right) \cdot \left (\frac{\displaystyle KF}{\displaystyle AK} \right ), а медиана MN — в отношении n = \left(\frac{\displaystyle MC}{\displaystyle ME}\right) \cdot \left (\frac{\displaystyle MD}{\displaystyle MA} \right ). Но \frac{\displaystyle MC}{\displaystyle ME}\ = \frac{\displaystyle KC}{\displaystyle KD}\\frac{\displaystyle KF}{\displaystyle AK}\ = \frac{\displaystyle MD}{\displaystyle MA}\. Следовательно, m = n.
Утверждение задачи доказано.

Замечание. Вот ещё одно, более естественное, хотя и несколько более сложное, доказательство леммы 2.

Проведем через V параллельные AS и AU прямые $(рис. 2)$.

Имеем: \frac{\displaystyle x}{\displaystyle y} = \frac{\displaystyle AC}{\displaystyle AB} (это характеристическое свойство точек медианы!). Теорема Фалеса дает: \frac{\displaystyle VS}{\displaystyle y} = \frac{\displaystyle US}{\displaystyle AU}\frac{\displaystyle x}{\displaystyle UV} = \frac{\displaystyle AS}{\displaystyle US}. Перемножая эти два равенства, получаем
\frac{\displaystyle VS}{\displaystyle UV} = \left(\frac{\displaystyle AS}{\displaystyle AU}\right) \cdot \left (\frac{\displaystyle y}{\displaystyle x} \right ) = \left (\frac{\displaystyle AS}{\displaystyle AU} \right ) \cdot \left (\frac{\displaystyle AB}{\displaystyle AC} \right ).
Лемма доказана.

М. Волкевич, В. Сендеров