N-мерное пространство и операции в нем

Метрическое пространство

Будем множество $latex X $ называть метрическим пространством, если каждой паре элементов $latex x $ и $latex y $ этого множества поставлено в соответствие неотрицательное число [latex] p(x,y) [/latex] , называемое расстоянием между элементами $latex x $ и $latex y $, такое, что для любых элементов $latex x $ , $latex y $, $latex z $ множества $latex X $ выполнены следующие условия:

  1. $latex p(x,y) = 0 \Leftrightarrow x=y; $
  2. $latex p(x,y) = p(y,x); $
  3. $latex p(x,y) \leq p(x,z)+ p(z,y), z \in \mathbb{R}, z = ( z_1, z_2,…, z_n); $ (неравенство треугольника).

Элементы метрического пространства будем называть точками (векторами), функцию [latex] p(x,y) [/latex] , определенную на множестве пар точек метрического пространства $latex X $,  $latex p $ — метрикой, а условия 1)-3) — аксиомами метрики. Например, определяя расстояние между вещественными числами [latex] \alpha [/latex]   и [latex] \beta [/latex] при помощи формулы $latex p(\alpha , \beta)= \left | \beta — \alpha \right | $  , получаем метрическое пространство, которое обозначается через $latex R $. Рассмотрим множество пар вещественных чисел $latex x=(x_{1}+x_{2}) $. Если $latex x=(x_{1}+x_{2}) $, а $latex y=(y_{1}+y_{2}) $, то полагая $latex p(x,y)= \sqrt{(x_{1}-y_{1})^2+(x_{2}-y_{2})^2} $ , получаем метрическое пространство, которое обозначается через $latex R^{2} $ .  

Метрическое пространство $latex R_{n} $

Точками пространства $latex R_{n} $  являются упорядоченные совокупности из $latex n $ вещественных чисел $latex x=(x_{1},..,x_{n}) $, $latex y=(y_{1},..,y_{n}) $, $latex z=(z_{1},..,z_{n}) $. Расстояние между точками $latex x $ и $latex y $ определяется формулой  $latex p(x,y) = \sqrt{(\sum_{i=1}^{n}(x_{i}-y_{i})^2)} $ . Свойства 1) и 2) расстояния, очевидно, выполняются. Сложнее проверить, что справедливо неравенство треугольника (доказано в разделе «неравенство Коши-Буняковского»). Так же, n-мерные (евклидовы) пространства являются топологическими пространствами. Базой их стандартной топологии можно выбрать открытые шары или открытые кубы.

Литература: