M1273. Площади фигуры, составленной из треугольников

Задача из журнала «Квант» (1991 год, выпуск 8)

На сторонах $AB$, $BC$ и $CA$ треугольника $ABC$ как на основаниях вне его построены треугольники $ABC_{1}$, $BCA_{1}$, $CAB_{1}$, у каждого из которых отношение высоты к основанию равно $k$. Такие же треугольники $ABC_{2}$, $BCA_{2}$ и $CAB_{2}$ построены и по другую (внутреннюю) сторону от оснований. Докажите, что площади $S$, $S_{1}$ и $S_{2}$ треугольников $ABC$, $A_{1}B_{1}C_{1}$ и $A_{2}B_{2}C_{2}$ связаны соотношением $$S_{1} \pm S_{2} = S \cdot \left(\frac12 + 6k^2\right) $$ (знак «$+$» или «$-$» зависит от ориентации треугольника $A_{2}B_{2}C_{2}$ по отношению к $ABC$).

Доказательство

Вершины треугольников с площадями $S_{1}$ и $S_{2}$ лежат на серединных перпендикулярах к сторонам треугольника $ABC$, проходящих через центр $O$ его описанной окружности. Если обозначить через $R$ радиус этой окружности, а через $\alpha$, $\beta$, $\gamma$ — углы треугольника $ABC$, то из рис.1 видно, что, поскольку синусы углов между перпендикулярами равны синусам углов между соответствующими сторонами, то $$ 2S_{1} = OA_{1} \cdot OB_{1} \cdot \sin \gamma + OB_{1} \cdot OC_{1} \cdot \sin \alpha + OC_{1} \cdot OA_{1} \cdot \sin \beta . $$

рис.1

Пусть $t$ — тангенс угла наклона стороны равнобедренного треугольника к основанию $(t = 2 \cdot k)$. Тогда отрезки от $O$ до вершин легко выразить через радиус $R$ и получить, что $$\begin{multline} \frac{2S_1}{R^2} = \left(\cos \alpha + t \sin \alpha \right) \cdot \left( \cos \beta + t \sin \beta \right) \cdot \sin \gamma + {} \\\\ {} + \left( \cos \beta+ t \sin \beta \right) \cdot \left( \cos \gamma+ t \sin \gamma \right) \cdot \sin \alpha + {} \\\\ {} + \left(\cos \gamma+ t \sin \gamma \right) \cdot \left( \cos \alpha+ t \sin \alpha \right) \cdot \sin \beta.\end{multline}$$
Отношение же $\frac{ 2S_{2} }{R^2}$ (для случая, изображенного на рис.1) равно аналогичному выражению, где вместо $t$ стоит $-t$. Сложив оба эти выражения и раскрыв скобки, мы увидим, что коэффициент при $t^1$ равен $0$, коэффициент при $t^2$ равен $6 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma$, а свободный член (здесь нужно использовать равенство $\alpha + \beta + \gamma = \pi$, откуда $ \cot \alpha \cdot \cot \beta + \cot \beta \cdot \cot \gamma + \cot \alpha \cdot \cot \gamma = 1$) равен $2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma$. По известной формуле $S = \frac{abc}{4R}$, выражающей площадь $S$ через стороны $a$, $b$, $c$ и радиус описанной окружности $R$, $$2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma = 2\frac{abc}{8R^3} = \frac{S}{R^2}$$
Откуда получаем нужную формулу $$\begin{equation} S_{1} + S_{2} = \frac{1+3t^2}{2} S = S \cdot \left(\frac12 + 6k^2\right) \end{equation} $$.
Эти рассуждения необходимо несколько уточнить, чтобы они оказались применимы не только для случая, изображенного на рис.1, но и для случая, когда внутренние треугольники налегают друг на друга, в частности, когда $A_{2}B_{2}C_{2}$ имеет противоположную ориентацию. Вместо этого мы посмотрим на наши рассуждения с более общей точки зрения.
Верен такой общий факт: если три точки $K$, $L$ и $M$ с постоянными скоростями движутся по трем прямым, то площадь ориентированного треугольника $KLM$ как функция,зависящая от времени $t$, выражается квадратным трехчленом от $t:S = F\left(t\right)$. Легко доказать это, например, с помощью метода координат (формула ориентированной площади треугольника с вершинами $\left(x_1, y_1\right)$, $\left(x_2, y_2\right)$, $\left(x_3, y_3\right)$ выглядит так: $$ S = \frac{x_1 y_2 — x_2 y_1 + x_2 y_3 — x_1 y_2 + x_3 y_1 — x_1 y_3}{2}.$$ Ясно, что если каждая координата выражается линейной функцией от $t$, то $S$ — квадратный трёхчлен от $t$).
Будем считать, что при $t=0$ наши точки совпадают с серединами сторон треугольника $ABC$ и двигаются по серединным перпендикулярам (при $t>0$ во внешнюю сторону) со скоростями, пропорциональными длинам $a$, $b$, $c$ соответствующих сторон треугольника: при некотором $t$ они занимают положения $A_{1}$, $B_{1}$, $C_{1}$, а при противоположном значении $\left(-t\right)$ — положения $A_{2}$, $B_{2}$, $C_{2}$. Нас интересует сумма $F\left(t\right)+F\left(-t\right)$, то есть свободный и старший (содержащий $t^2$) члены $F\left(t\right)$, которые по сущетсув мы и вычисляли выше (1).
Интересно заметить, однако, что они имеют геометрический смысл, так что можно найти их без вычислений. Свободный член $F\left(0\right)$ — это $\frac{S}{4}$ (площадь треугольника из средних линий $ABC$). Чтобы найти старший коэффициент, — он определяется как отношение площади $S_{1}$ к $t^2$ в пределе при $t$ стремящемся к бесконечности, — заметим, что при очень большом $t$ треугольник $ABC$ можно считать «почти точкой» $O$. При этом векторы $OA_{1}$, $OB_{1}$, $OC_{1}$ перпендикулярны соответствующим сторонам треугольника и им пропорциональны ( с коэффициентом $k=\frac{t}{2}$ ). Сумма этих векторов $OA_{1}$, $OB_{1}$ и $OC_{1}$ равна нулю (как и векторов, образующих стороны треугольника), то есть они служат отрезками медиан треугольника $A_{1}B_{1}C_{1}$, причем последний по площади в 3 раза больше треугольника $A_{1}OD$ (рис.2), подобного $ABC$ с коэффициентом $k$. Отсюда ясно, что старший член $F\left(t\right)$ имеет вид $3 k^2 \cdot S = 3 \frac{t^2 \cdot S}{4}$.
рис.2

Итак, $F\left(t\right) = \frac {S \left(1+ \ldots +3 t^2\right)}{4}$, откуда следует нужная формула (2) для $S_1 \pm S_2 = F\left(t\right)+F\left(-t\right)$.
Отметим интересные частные случаи нашей формулы: если на сторонах строятся правильные треугольники, то $t = \sqrt{3}$, так что $S_1 \pm S_2 = 5S$; если равнобедренные прямогульные, то $-t = 1$ и $S_1 \pm S_2 = 2S$; а если $t = \frac{\sqrt{3}}{6}$ (при этом новые точки — центры правильных треугольников, построенных на сторонах), то $S_1 \pm S_2 = S$.

M706. Задача о равенстве хорд двух окружностей.

Задача из журнала «Квант» (1981 год, выпуск 10)

Условие:

Из центра каждой из двух данных окружностей проведены касательные к другой окружности. Докажите, что хорды, соединяющие точки пересечения касательных с окружностями (на рисунке 1 эти хорды показаны красным цветом), имеют одинаковые длины.

M706 - Рисунок 1

Доказательство:

Из подобия соответствующих треугольников (см. рисунок 2) легко находим,что каждая хорда имеет длину $ \frac{2Rr}{O_{1}O_{2}}$.

m706 Рисунок 2

Источники:

  1. Условие задачи
  2. Решение задачи

М838. О разбиении точек, лежащих на сторонах треугольника, на множества

Задача из журнала “Квант” (1984, №3)

Условие

Все точки, лежащие на сторонах правильного треугольника $ABC$ разбиты на два множества $E_{1}$ и $E_{2}$. Верно ли, что для любого такого разбиения в одном из множеств $E_{1}$ и $E_{2}$ найдется тройка вершин прямоугольного треугольника?

рис. 1

Ответ

Верно.

Доказательство

Доказательство проведем от противного. Пусть точки множества $E_{1}$ окрашены синим цветом, множества $E_{2}$ – красным. Предположим, что не существует прямоугольного треугольника с одноцветными вершинами, и рассмотрим правильный шестиугольник, вписанный в треугольник $ABC$ (см. рисунок 1). Каждые две его противоположные вершины должны быть окрашены по-разному — если, например, противоположные вершины $P$ и $Q$ синие, то любая из остальных четырех вершин должна быть красной, так как образует вместе с $P$ и $Q$ прямоугольный треугольник: но тогда любые три из этих красных точек образуют запрещенный одноцветный прямоугольный треугольник.

рис. 2

Ясно, что в таком случае найдутся две соседние разноцветные вершины шестиугольника. Либо эти две вершины, либо противоположные им (тоже разноцветные!) лежат на одной из сторон треугольника. Пусть для определенности на стороне $AB$ лежат синяя вершина $К$ и красная $L$, тогда противоположные им вершины $K’$ и $L’$ будут красной и синей (см. рисунок 3). Но тогда в какой бы цвет ни была окрашена вершина $А$, один из
прямоугольных треугольников $AKL’$ и $ALK’$ будет одноцветным. Противоречие.

рис. 3

Это рассуждение показывает, что даже множество из восьми точек — вершин шестиугольника и любых двух вершин треугольника — нельзя разбить на подмножества без прямоугольных треугольников.

Н.Б. Васильев, В.Н. Дубровский

M1568. Сечение пирамиды

Задача из журнала «Квант» (1996, №5, M1568)

Условие

Докажите что при [latex]n\ge 5[/latex] сечение пирамиды, в основании которой лежит правильный n-угольник, не может являться правильным (n+1)-угольником.

Решение

Пусть правильный (n+1) –угольник [latex]{ B }_{ 1 }…{ B }_{ n }[/latex] является сечением пирамиды [latex]S{ A }_{ 1 }…{ A }_{ n }[/latex] где [latex]{ A }_{ 1 }…{ A }_{ n }[/latex] – правильный n-угольник. Мы рассмотрим три случая: [latex]n=5 , n=2k-1 (k>3)[/latex]  и [latex]n=2k (k>2)[/latex]
Так как n-угольная пирамида имеет [latex](n+1)[/latex] грань, то стороны сечения находятся по одной в каждой грани пирамиды. Поэтому без ограничения общности рассуждений можно считать, что точки [latex]{ B }_{ 1 }…{ B }_{ n+1 }[/latex] расположены на ребрах пирамиды так, как показано на рисунках 1 и 2 ( в соответствии с указанными случаями).

  1. [latex] n=5 [/latex]. Так как в правильном шестиугольнике [latex]{ B }_{ 1 }…{ B }_{ 6 }[/latex] прямые [latex]{ B }_{ 2 }{ B }_{ 3 }, { B }_{ 5 }{ B }_{ 6 }[/latex] и [latex]{ B }_{ 1 }{ B }_{ 4 }[/latex] параллельны, а плоскости  [latex]{ A }_{ 2 }S{ A }_{ 3 }[/latex] и [latex]ASA [/latex] проходят через [latex]{ B }_{ 2 }{ B }_{ 3 }[/latex] и [latex]{ B }_{ 5 }{ B }_{ 6 }[/latex]  то их линия пересечения [latex]{ ST ( T= { A }_{ 1 }{ A }_{ 5 } }\bigcap { A } _{ 2 }{ A }_{ 3 } )[/latex] параллельна этим прямым т.е. [latex]ST\parallel { B }_{ 1 }{ B }_{ 4 }[/latex] Проведем через прямые [latex]ST[/latex]  и [latex]{ B }_{ 1 }{ B }_{ 4 }[/latex] плоскость. Эта плоскость пересечет плоскость основания пирамиды по прямой [latex]{ B }_{ 1 }{ A }_{ 4 }[/latex] которая должна проходить через точку пересечения прямой [latex]ST[/latex] с плоскостью основания т.е. через точку [latex]T[/latex]. Итак, прямые [latex]{ A }_{ 1 }{ A }_{ 5 }, { A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]{ A }_{ 2 }{ A }_{ 3 }[/latex] пересекаются в одной точке.Аналогично доказывается, что прямые [latex]{ A }_{ 1 }{ A }_{ 2 }, { A }_{ 3 }{ B }_{ 6 }[/latex] и [latex]{ A }_{ 4 }{ A }_{ 5 }[/latex]  и пересекаются в одной точке. Из этого следует что [latex]{ A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]{ A }_{ 3 }{ B }_{ 6 }[/latex]  – оси симметрии правильного пятиугольника [latex]{ A }_{ 1 }…{ A }_{ 5 }[/latex] , значит. Точка O их пересечения – центр этого пятиугольника. Заметим теперь, что если [latex]Q[/latex] – центр правильного шестиугольника [latex]{ B }_{ 1 }…{ B }_{ 6 }[/latex] , то плоскости [latex] S{ A }_{ 3 }{ B }_{ 6 }, S{ A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]S{ B }_{ 2 }{ B }_{ 5 }[/latex] пересекаются по прямой [latex]SQ[/latex]. Следовательно прямые  [latex]{ A }_{ 3 }{ B }_{ 6 },{ A }_{ 4 }{ B }_{ 1 }[/latex] и [latex]{ A }_{ 2 }{ A }_{ 5 }[/latex]  должны пересекаться в одной точке – точке пересечения прямой [latex]SQ[/latex] с плоскостью основания пирамиды.Значит диагональ правильного пятиугольника [latex]{ A }_{ 1 }…{ A }_{ 5 }[/latex] должна проходить через его центр [latex]O[/latex], что невозможно.
  2. 4

  3.  [latex] n=2k-1 (k>3) [/latex] Аналогично первому случаю показывается, что так как в правильном [latex]2k[/latex]-угольнике [latex] { B }_{ 1 }…{ B }_{ 2k }[/latex] прямые  [latex] { B }_{ 1 }{ B }_{ 2 },{ B }_{ k+1 }{ B }_{ k+2 }[/latex] и [latex]{ B }_{ k }{ B }_{ k+3 }[/latex]параллельны, то  прямые  [latex] { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 }[/latex] и [latex]{ A }_{ k }{ A }_{ k+3 }[/latex] должны пересекаться в одной точке, что невозможно, так как в правильном [latex](2k-1)[/latex]-угольнике [latex]{ A }_{ 1 }…{ A }_{ 2k-1 }[/latex] имеем [latex]{ A }_{ k+1 }{ A }_{ k+2 }\parallel { A }_{ k }{ A }_{ k+3 }[/latex], а прямые [latex]{ A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 }[/latex] не параллельны.
  4.  [latex]n=2k (k>2) [/latex] Аналогично предыдущему случаю прямые [latex] { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 }[/latex] и [latex]{ A }_{ k }{ A }_{ k+3 }[/latex]  параллельны, следовательно, прямые [latex] { B }_{ 1 }{ B }_{ 2 },{ B }_{ k+1 }{ B }_{ k+2 }[/latex] и [latex]{ B }_{ k }{ B }_{ k+3 }[/latex] должны пересекаться в одной точке, что невозможно, так как [latex]{ B }_{ k+1 }{ B }_{ k+2 }\parallel { B }_{ k }{ B }_{ k+3 }[/latex], а прямые [latex]{ A }_{ 1 }{ A }_{ 2 }, { A }_{ k+1 }{ A }_{ k+2 }[/latex]  не параллельны.

Замечания

  1.  При [latex]n=3,4[/latex] утверждение задачи неверно. Примерами могут служить правильный тетраэдр имеющий сечением квадрат и правильная четырехугольная  пирамида, все боковые грани которой являются правильными треугольниками, которая имеет сечением правильный пятиугольник
  2. Приведенное решение можно было бы изложить короче, если воспользоваться центральным проектированием и его свойством утверждающим, что при центральном проектировании образами прямых, проходящих через одну точку, являются прямые, проходящие через одну точку ( или параллельные). Достаточно спроектировать сечение пирамиды на плоскость из вершины пирамиды.

Д. Терешин.

M1611. Построение прямого угла на пересекающихся окружностях

Задача из журнала «Квант» М1611 ( 1997, выпуск №5)

Задача:

Две окружности пересекаются в точках $A$ и $B$. Через точку $A$ проведена прямая, вторично пересекающая первую окружность в точке $C$, а вторую — в точке $D$. Пусть $M$ и $N$
— середины дуг $BC$ и $BD$, не содержащих точку $A$, а $K$ — середина отрезка $CD$. Докажите, что угол $MKN$ прямой.
(Можно считать, что точки $C$ и $D$ лежат по разные стороны от точки $A$)

Решение:

Пусть $N_{1}$ — точка, симметричная точке $N$ относительно $K$ (см. рисунок).

"Квант" M1611

Тогда $\bigtriangleup KCN_{1} = \bigtriangleup KDN$, поэтому $CN_{1} = ND$ и $\angle N_{1}CK = \angle NDK = \pi — \angle ABN$. Заметим ещё, что $\angle MCK = \pi — \angle ABM$. Складывая полученные равенства, находим, что $\angle N_{1}CM = \angle MBN$. Кроме того, из условия следует, что $CM = MB$ и $BN = ND$ (т.е. $BN = CN_{1}$). Значит, $\bigtriangleup MCN_{1} = \bigtriangleup MBN$, откуда $MN_{1} = MN$. Отрезок $MK$ — медиана в равнобедренном треугольнике $MNN_{1}$, поэтому $\angle MKN = 90^{\circ}$.

Замечание:

Задача имеет много других решений. Например, можно воспользоваться подобием треугольников $MEK$ и $KFN $, где $E $ и $F$ — середины отрезков $BC$ и $BD$ соответственно. Эти треугольники имеют две пары взаимно перпендикулярных сторон
($EK$ и $FN$, $ME$ и $KF$), следовательно, перпендикулярны и их третьи стороны.

Кроме того, соображения, использующие композицию поворотов, позволяют отказаться от дополнительного условия в задаче (о том, что точки $C$ и $D$ лежат по разные стороны от $A$), которое было задано лишь затем, чтобы избежать разбора различных случаев. Действительно, рассмотрим композицию поворотов $R^{\beta}_{M} \circ R^{\alpha}_{N}$ — на углы $\alpha = \angle DNB$ и $\beta = \angle BCM$ вокруг точек $N$ и $M$ соответственно (углы предполагаются ориентированными). Заметим, что $\alpha + \beta = 180^{\circ}$, поэтому $R^{\beta}_{M} \circ R^{\alpha}_{N} = Z_{x}$ — центральная симметрия относительно некоторой точки $X$. Но
$Z_{x}(D) = \left(R^{\beta}_{M} \circ R^{\alpha}_{N} \right) = R^{\beta}_{M}(B) = C$,
поэтому $X$ — середина отрезка $CD$, т. е. точка $K$. Если $N_{1} = Z_{K}(N)$, то $N_{1} = \left(R^{\beta}_{M} \circ R^{\alpha}_{N} \right) \left( N \right)$, т. е. $\bigtriangleup NMN_{1}$ — равнобедренный и $\angle MKN = 90^{\circ}$.

Д. Терешин