Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

13.4 Производная сложной функции

Пусть g — отображение открытого множества ERn в открытое множество NRm, а f:NRp. Тогда можно рассматривать сложную функцию F:ERp, F(x)=f(g(x))   (xE). Ее называют композицией F=fg.

Теорема. Пусть отображение g дифференцируемо в точке x0E, а отображение f дифференцируемо в соответствующей точке y0=g(x0)N. Тогда композиция F=fg дифференцируема в точке x0 и справедливо равенство
F(x0)=f(y0)g(x0).

Обозначим A=f(y0), B=g(x0). При достаточно малой длине вектора k вектор y0+kN и справедливо равенство
f(y0+k)f(y0)=A(k)+α(k)|k|,
где
limk0α(k)=0(α(0)=0).
(Заметим, что N — открытое множество, и поэтому y0+kN при достаточно малых по длине векторах k.) Если вектор h достаточно мал, то x0+hE. Положим kk(h)=g(x0+h)g(x0). Тогда f(y0+k)=f(g(x0+h))=F(x0+h) и получаем
F(x0+h)F(x0)=A(k(h))+α(k(h))|k(h)|,
где
k(h)=B(h)+β(h)|h|
по свойству дифференцируемости отображения g, и limh0β(h)=0. Подставив это в равенство (13.3), получаем
F(x0+h)F(x0)=A(B(h))+r(h),
где
r(h)=A(β(h)|h|)+α(k(h))|k(h)|.
По определению производной, нужно доказать, что limh0|r(h)||h|=0,
и тем самым теорема будет доказана.
Пусть r1(h)=A(β(h)|h|). Тогда в силу линейности отображения А,
|r1(h)||h|=|A(β(h))|A|β(h)|.
Но правая часть стремится к нулю при h0, и поэтому получаем, что
limh0|r1(h)||h|=0.
Теперь положим r2(h)=α(k(h))|k(h)|. Воспользуемся неравенством
|k(h)||B(h)|+|h||β(h)|[B+|β(h)|]|h|,
откуда
|r2(h)||h|(B+|β(h)|)|α(k(h))|.
Первый множитель справа ограничен при достаточно малых h, а второй множитель справа стремится к нулю при h0 в силу (13.2).
Таким образом, |r(h)||h||r1(h)||h|+|r2(h)||h| стремится к нулю при h0, и теорема доказана.

Замечание. В правой части равенства (13.1) мы имеем композицию линейных отображений f(y0) и g(x0). Поэтому доказанную теорему можно сформулировать так: производная композиции равна композиции производных.

Цепное правило.
Пусть z=f(y1,,ym) – действительная функция. Если положить yi=gi(x)(i=1,,m), то получим z=f(g1(x),,gm(x)), и тогда, согласно правилу дифференцирования сложной функции,
dzdx=fy1dg1dx++fymdgmdx
Положим теперь yi=gi(x1,,xn)(i=1,,m) и получим сложную функцию z=f(g1(x1,,xn),,gm(x1,,xn)). Если воспользоваться упомянутым только что правилом дифференцирования сложной функции, то получим
zxi=fy1g1xi++fymgmxi(i=1,,n).
Это равенство называется цепным правилом.

Цепное правило можно вывести также из только что доказанной теоремы. Действительно, положим в теореме p=1, т. е. рассмотрим случай, когда f – действительная функция. Тогда F:ER – действительная функция. Из соотношения (13.1) видно, что матрица производной F(x0) равна произведению матриц f(y0) и g(x0). В векторной форме это можно записать так:
(Fx1(x0),,Fxn(x0))=
=(fy1(y0),,fym(y0))(g1x1(x0)g1xn(x0)gmx1(x0)gmxn(x0)).
В частности,
Fxi=fy1g1xi++fymgmxi(i=1,,n),
и тем самым снова получаем цепное правило.

Примеры решения задач

Рассмотрим примеры задач, в которых фигурируют производные сложных функций. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Найти производную сложной функции u=xyyx, где x=sin(t), y=cos(t)
    Решение

    ux=(xyyx)=1y(x)y(1x)=1y+yx2
    uy=(xyyx)=x(1y)1x(y)=xy21x
    dxdt=(sin(t))=cos(t) dydt=(cos(t))=sin(t)
    dudt=uxdxdt+uydydt=(1y+yx2)cos(t)+(xy1x)(sin(t))

  2. Найти полную производную сложной функции u=x+y2+z3, где y=sin(x), z=cos(x)
    Решение

    dudx=ux+uydydx+uzdzdx==1+2ycos(x)+3z2(sin(x))=1+2sin(x)cos(x)3cos2(x)sin(x)

  3. Найти полный дифференциал сложной функции u=ln2(x2+y2z2)
    Решение

    Вначале находим частные производные:
    ux=2ln(x2+y2z2)1x2+y2z22x
    uy=2ln(x2+y2z2)1x2+y2z22y
    uz=2ln(x2+y2z2)1x2+y2z2(2z)
    Для функции n-переменных y=f(x1,x2,,xn) полный дифференциал определяется выражением : dy=yx1dx1+yx2dx2++yxndxn. Согласно этой формуле, получаем :
    du=4ln(x2+y2z2)1x2+y2z2(xdx+ydyzdz)

  4. Вычислить приближенно (1,02)3,01
    Решение

    Рассмотрим функцию z=zy. При x0=1 и y0=3 имеем z0=13=1,
    Δx=1,021=0,02Δy=3,013=0,01.
    Находим полный дифференциал функции z=xy в любой точке:
    dz=yxy1Δx+yln(x)Δy
    Вычисляем его значения в точке M(1,3) при данных приращениях Δx=0,02 и Δy=0,01
    dz=3120,02+13ln(1)0,02=0,06
    Тогда z=(1,02)3,01z0+dz=1+0,06=1,06

  5. Найти частные производные второго порядка функции z=ex2y2
    Решение

    Вначале найдем частные производные первого порядка:
    zx=ex2y22xy2,zy=ex2y22x2y
    Продифференцировав их еще раз, получим:
    2zx2=ex2y24x2y4+ex2y22y2
    2zy2=ex2y24x4y2+ex2y22x2
    2zxy=ex2y24x3y3+ex2y24xy
    2zyx=ex2y24x3y3+ex2y24xy
    Сравнивая последние два выражения, видим, что 2zxy=2zyx

  6. Найти полный дифференциал второго порядка функции z=x3+y3+x2y2
    Решение

    Вначале находим частные производные до второго порядка:
    zx=3x2+2xy2,zy=3y2+2x2y
    2zx2=6x+2y2,2zy2=6y+2x2,2zxy=4xy
    Полный дифференциал второго порядка d2z функции z=f(x,y) выражается формулой:
    d2z=2zx2dx2+22zxydxdy+2zy2dy2
    Следовательно,
    d2z=(6x+2y2)dx2+8xydxdy+(6y+2x2)dy2

Литература

  1. Лысенко З.М. Конспект лекций по математическому анализу.
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2009, ч.1, раздел 13.4 «Производная сложной функции» (стр. 311 — 313).
  3. А. П. Рябушко «Сборник индивидуальных заданий по высшей математике». — Минск: «Вышэйшая школа», 1991, ч.2, разделы 10.2,10.3 «Полный дифференциал. Дифференцирование сложных и неявных функций», «Частные производные высших порядков. Касательная плоскость и нормаль к поверхности» (стр. 212 — 216).
  4. И. И. Ляшко, А.К. Боярчук, Я.Г.Гай, Г.П.Головач «Математический анализ: введение в анализ, производная, интеграл». «М.Едиториал», 2001, глава 2(4), «Производные и дифференциал высших порядков» (стр. 137).

Производная сложной функции

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Дифференцируемость композиции дифференцируемых функций

В данной статье, используя термин «сложная функция», мы будем понимать композицию нескольких функций.

Теорема

Пусть функции [latex]{ \varphi }_{ i }(x)={ \varphi }_{ i }({ x }_{ 1 },{ x }_{ 1 },{ x }_{ 1 },…,{ x }_{ n })\quad i=\overline { 1,m }[/latex] дифференцируемы в точке [latex]{ x }^{ \circ }=({ x }_{ 1 }^{ \circ },{ x }_{ 2 }^{ \circ },…,{ x }_{ n }^{ \circ })[/latex] . Пусть функция [latex]f({ y }_{ 1 },{ y }_{ 2 },{ y }_{ 3 },…{ ,y }_{ m })[/latex] дифференцируема в точке [latex]{ y }^{ \circ }=({ \varphi }_{ 1 }({ x }^{ \circ }),{ \varphi }_{ 2 }({ x }^{ \circ }),…,{ \varphi }_{ m }({ x }^{ \circ }))[/latex].

Тогда сложная функция [latex]T(x)=f({ \varphi }_{ 1 }(x),{ \varphi }_{ 2 }(x),…,{ \varphi }_{ m }(x))[/latex] дифференцируема в точке [latex]{ x }^{ \circ }[/latex] , причем при [latex]{ x\rightarrow x }^{ \circ }[/latex]
T(x)T(x)=ni=1Ai(xixi)+o(p(x,x))
Ai=Txi(x)=mj=1fyj(y)φixi(x),i=¯1,n(1)

Спойлер
Спойлер
Спойлер

 

Дифференцируемость композиции дифференцируемых функций

Тест, на понимание темы «Дифференцируемость композиции дифференцируемых функций»

Таблица лучших: Дифференцируемость композиции дифференцируемых функций

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о смешанных производных

Теорема 1(для функции двух переменных)

Пусть функция f(x,y) определенна со своими частными производными fx,fy,fxy,fyx в некоторой окрестности точки (x0,y0), и при этом fxy и  fyx непрерывны в этой точке. Тогда  эти производные равны ( результат не зависит от порядка дифференцирования). fxy(x0,y0)=fyx(x0,y0)
Доказательство
Пример
Контрпример

Теперь сформулируем общую теорему. Ее можно несложно доказать с помощью индукции.

Теорема 2 (обобщение)

Если у функции n переменных смешанные частные производные m-го порядка непрерывны в некоторой точке, а производные низших порядков непрерывны в окрестности этой точки, то частные производные порядка m  не зависят от порядка дифференцирования.
Замечание 1

Пример

Замечание 2

Теорема о смешанных производных

Тест, на понимание темы «Теорема о смешанных производных»

Таблица лучших: Теорема о смешанных производных

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Формула Тейлора с остатком в форме Пеано

Формулировка:

Если существует f(n)(x0), то f(x) представима в следующем виде:

f(x)=nk=0f(k)k!(xx0)k+o((xx0)n)xx0

Это выражение f(x) называется формулой Тейлора с остаточным членом в форме Пеано (или локальной формулой Тейлора)

Доказательство:

Для начала докажем Лемму

Пусть функции φ(x),ψ(x) определены в  δ  окрестности точки x0 и удовлетворяют следующим условиям:

  1. xUδφ(n+1)(x),ψ(n+1)(x);
  2. φ(x0)=φ(x0)==φ(n)(x0)=0ψ(x0)=ψ(x0)==ψ(n)(x0)=0
  3. ψ(x)0,ψk(x)0xUδ(x0),k=¯1,n+1

Тогда xUδ(x0) существует точка ξ, принадлежащая интервалу с концами x0 и x такая, что φ(x)ψ(x)=φn+1(ξ)ψn+1(ξ)

Доказательство 

Пусть, например, x(x0,x0+δ). Тогда применяя к функциям φ и ψ на отрезке [x0,x] теорему Коши и учитывая, что φ(x)=ψ(x)=0 по условию, получаем

φ(x)ψ(x)=φ(x)φ(x0)ψ(x)ψ(x0)=φ(ξ1)ψ(ξ1)$,$x0<ξ1<x

Аналогично, применяя к функциям φ и ψ на отрезке [x0,ξ1] теорему Коши, находим

\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi'(\xi_{1})-\varphi'(x_{0})}{\psi'(\xi_{1})-\psi'(x_{0})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})}, x_{0}<\xi_{2}<\xi_{1}

Из этих двух равенств следует, что

\frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=\frac{\varphi»(\xi_{2})}{\psi»(\xi_{2})}, x_{0}<\xi_{2}<\xi_{1}<x<x_{0}+\delta

Применяя теорему Коши последовательно к функциям  \varphi»  и  \psi» , \varphi^{(3)}  и  \psi^{(3)} ,…, \varphi^{(n)}  и  \psi^{(n)} на соответствующих отрезках получаем

\frac{\varphi(x)}{\psi(x)}=\frac{\varphi'(\xi_{1})}{\psi'(\xi_{1})}=…=\frac{\varphi^{n}(\xi_{n})}{\psi^{n}(\xi_{n})}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)}

где  x_{0}<\xi<\xi_{n}<…<\xi_{2}<\xi_{1}<x<x_{0}+\delta

Равенство доказано для случая, когда  x \in(x_{0},x_0+\delta) , аналогично рассматривается случай, когда  x \in(x_0-\delta,x_{0}) .

Теперь, когда лемма доказана, приступим к доказательству самой теоремы:

Из существования  f^{(n)}(x_{0})  следует, что функция  f(x_{0})  определена и имеет производные до  (n-1)  порядка включительно в  \delta  окрестности точки   x_{0}

Обозначим  \varphi(x)=r_{n}(x),\psi(x)=(x-x_{0})^{n} , где   r_{n}(x)=f(x)-P_{n}(x) .

Функции  \varphi(x)  и  \psi(x)  удовлетворяют условиям леммы, если заменить номер  n+1  на  n-1

Используя ранее доказанную лемму и учитывая, что  r_{n}^{(n-1)}(x_{0})=0  получаем

\frac{r_{n}(x)}{(x-x_{0})^{n}}=\frac{r_{n}^{n-1}(\xi)-r_{n}^{(n-1)}(x_{0})}{n!(\xi-x_{0})}, \xi=\xi(x)(*)

где  x_{0}<\xi<x<x_{0}<x_{0}+\delta  или  x_{0}-\delta<x<\xi<x_{0} .

Пусть  x\to x_{0} , тогда из неравенств следует, что  \xi \to x_{0} , и в силу существования  f^{(n)}(x_{0})  существует

\lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(x)-r_{n}^{(n-1)}(x_{0)}}{x-x_0}=

=\lim\limits_{x\to x_{0}}\frac{r_{n}^{(n-1)}(\xi)-r_{n}^{(n-1)}(x_{0)}}{\xi-x_{0}}=r_{n}^{(n)}(x_{0})=0

Так как выполняются равенства  r_{n}(x_{0})=r_{n}'(x_{0})=…=r_{n}^{(n)}(x_{0})=0

Таким образом, правая часть формулы  (*)  имеет при  x\to x_{0}  предел, равный нулю, а поэтому существует предел левой части этой формулы, так же равный нулю. Это означает, что  r_{n}(x)=o((x-x_{0})^{n}),x\to x_{0} , то есть f(x)-P_{n}(x)=o((x-x_{0})^{n}) , что и требовалось доказать.

Пример:

Разложить функцию  y=\cos^{2}(x)  в окрестности точки  x_{0}=0   по Тейлору с остатком в форме Пеано.

Решение

Табличное разложение косинуса имеет следующий вид:

\cos(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-…+(-1)^{n}\frac{x^{2n}}{(2n)!}+o(x^{2n+1})

Представим функцию  \cos^{2}(x)  в виде:

\cos^{2}(x)=\frac{1+\cos(2x)}{2}=\frac{1}{2}+\frac{1}{2}\cos(2x)

Заменим в табличном разложении  x  на  2x  и подставим представление косинуса.Получим

\cos^{2}(x)=1-x^2+\frac{x^{4}}{3}-…+(-1)^{n} \frac{2^{2n-1}x^{2n}}{2n!}+o(x^{2n+1})

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §18 с. 161.

Тест на знание формулы Тейлора(ост.Пеано)

Проверьте себя на знание доказательства и применения формулы Тейлора с остатком в форме Пеано.

Дифференцируемость сложной функции

Теорема (о дифференцировании сложной функции)

Если функции latex z=f(y) и latex y=\varphi(x) дифференцируемы соответственно в точках latex y_0 и latex x_0, где latex y_0=\varphi(x_0), то latex z=f(\varphi(x)) — дифференцируема в точке latex x_0, причём latex z'(x_0)=f'(y_0)\cdot \varphi'(x_0)=f'(\varphi(x_0)) \cdot \varphi'(x_0).

Доказательство

Т.к. функции latex f и latex \varphi непрерывны, то latex z(x)=f(\varphi(x)) — непрерывны в точке latex x_0 \Rightarrow z определена в latex u_\delta (x_0)

latex |\Delta x|<\delta

latex \Delta y=\varphi(x_0+\Delta x) — \varphi(x_0)
latex \Delta z=z(x_0+\Delta x)-z(x_0)

latex \Delta z=f(y)=f(\varphi(x))
latex \Delta z=f'(y_0) \cdot \Delta y + \Delta y \cdot \alpha (\Delta y), где latex \lim\limits_{\Delta y \to 0} \alpha (\Delta y)=0
latex \frac{\Delta z}{\Delta x} = \lim\limits_{\Delta x \to 0} \frac{f'(y_0) \Delta y + \Delta y \cdot \alpha (\Delta y)}{\Delta x}=&s=2
latex =\lim\limits_{\Delta x \to 0}(f'(y_0)\cdot \underset{\underset{\varphi'(x_0)}{\downarrow}}{\underbrace{\frac{\Delta y}{\Delta x}}} + \underset{\underset{0}{\downarrow}}{\underbrace{\frac{\Delta y}{\Delta x} \cdot \alpha (\Delta x)}})=f'(y_0) \cdot \varphi'(x_0) &s=2
Теорема доказана.

Читать далее «Дифференцируемость сложной функции»