Processing math: 100%

Оценка погрешности приближенного вычисления определенных интегралов по формуле Тейлора

Рассмотрим погрешность приближённого вычисления определённых интегралов по формуле Тейлора.

Обозначим погрешность через [latex]R_{n}[/latex]

[latex]R_{n}[/latex] представляет собой разность истинного значения определённого интеграла и полученного в результате приблизительного вычисления.

Разумеется, что истинное значение также считается приближённо. Иначе, можно было б использовать точные методы вычисления определённых интегралов.

Проанализируем погрешность вычисление примера 1 :

[latex]\int_{0}^{0.3} e^{-2x^{2}}=0.3-2\frac{0.3^{3}}{3}+2\frac{0.5^{5}}{5}-\frac{4*(0.3)^{7}}{21}+…=0.3-0.018+0.000972-…\approx[/latex]

[latex] \approx0.3-0.018=0.282[/latex]

Видем, что каждый следующий член суммы на порядки меньше предыдущего.

Если вычислить интеграл, взяв только первый член ряда, получим погрешность [latex]R_{n}\approx0.018972[/latex]

Два первых:

[latex]R_{n}\approx0.000972[/latex]

Имеем, что высокая точность достигается довольно быстро.

Аналогичные рассуждения можно провести с  примером 2.

Литература :

Примеры интегрирования рациональных функций от sin x, cos x и sinh x, cosh x

(Прочитав разделы «Универсальная подстановка» и «Интегрирование рациональных функций от sin x, cos x и sinh x, cosh x», попробуйте решить следующие примеры. Если же решить не получиться, жмите «ПОКАЗАТЬ»)

 

1) Найти интеграл latexdx4sinx+3cosx+5

Подсказка: используйте подстановку        latextanx2=t

Спойлер

 

 

2) Найти интеграл latex(sinx+sin3x)dxcos2x .

Подсказка : используйте замену   latexcosx=t   , а также свои знания по теме  «Тригонометрические тождества» 

Спойлер

 

 

3) Найти интеграл latexcoshx2+3sinhxdx

Подсказка: используйте подстановку    latext=2+3sinhx 

Спойлер

 

 

4) Найти интеграл latexsinh3xdx
Подсказка:  используйте гиперболиские соотношения 

Спойлер

Список литературы:

  • А.Г. Попов, П.Е. Данко, Т.Я. Кожевникова «Мир и образование» 2005 г.  (Издание 6-е. Часть 1)  стр. 234-242
  • Лысенко З.М. Конспект лекций по курсу математического анализа.

Дополнительные материалы :

 

 

Тест (Вычисление интегралов методом универсальной подстановки)

по темам «Интегрирование рациональных функций от sin x, cos x и sinh x, cosh x» и «Универсальная подстановка«


Таблица лучших: Тест (Вычисление интегралов методом универсальной подстановки)

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Интегрирование рациональных функций от sin x, cos x и sinh x, cosh x

Интегрирование любого рационального выражения тригонометрических функций можно всегда свести к интегрированию алгебраической рациональной функции используя универсальную тригонометрическую подстановку latexx=2arctant    или  latextanx2=t .

 

Интегралы вида latexR(sinx,cosx)dx   , где R-рациональная функция.

В результате подстановки   $latex t=\tan \frac{x}{2}$    в указанные интегралы получаем:

latexsinx=2tanx21+tan2x2=2t1+t2 ;       latexcosx=1tan2x21+tan2x2=1t21+t2 , где    latexdx=2dt1+t2 .

Гиперболические функции    определяются следующим образом:

latexsinhx=exex2 ;       latexcoshx=ex+ex2 .


Приведем еще несколько полезных соотношений :   

  • latexcosh2xsinh2x=1 ;
  • latexsinh2x=2sinhcosh ;
  • latexcosh2x=cosh2+sinh2

Если подынтегральное выражение содержит гиперболическую функцию, то такой интеграл можно свести к интегрированию рациональной функции с помощью подстановки 

latext=ex ;           latexx=lnt ;           latexdx=dtt .

 

Для усвоения материала на практике, переходим в раздел «Примеры интегрирования рациональных функций от latexsinx, latexcosx и latexsinhx, latexcoshx»

Список литературы:

  • А.Г. Попов, П.Е. Данко, Т.Я. Кожевникова «Мир и образование» 2005 г.  (Издание 6-е. Часть 1)  стр. 234-242
  • Лысенко З.М. Конспект лекций по курсу математического анализа.

Дополнительные материалы :

 

 

Тест (Вычисление интегралов методом универсальной подстановки)

по темам «Интегрирование рациональных функций от sin x, cos x и sinh x, cosh x» и «Универсальная подстановка«


Таблица лучших: Тест (Вычисление интегралов методом универсальной подстановки)

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Примеры приближенного вычисления определенных интегралов по формуле Тейлора

Интегралы от некоторых функций не могут быть выражены через элементарные функции. Для нахождения таких интегралов применяются различные приближённые методы интегрирования, смысл которых состоит в том, чтобы заменить подынтегральную функцию на «близкую» к ней функцию, проинтегрировав которую, мы получим элементарную функцию.

В частности, мы рассмотрим один из таких методов — разложение подынтегральной функции в ряд Тейлора.

Принцип этого метода состоит в том, чтобы заменить подынтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму.

Проиллюстрируем данный метод на примере (вычислим с точностью до 0,001):

1) [latex]\int\limits_{0}^{0.3} e^{-2x^{2}}dx[/latex]

Спойлер

Рассмотрим ещё пример (вычислим с точностью до 0,0001):

2) [latex]\int\limits_{0}^{0.5} \frac{1-\cos(x)}{x^{2}}dx[/latex]

Спойлер

Литература :

Приближённое интегрирование

Данный тест поможет Вам усвоить материал этой записи.

Таблица лучших: Приближённое интегрирование

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Таблица основных интегралов

Таблица основных интегралов
Интеграл Значение
dx x+C
axdx axlna+C
exdx ex+C
xadx xa+1a+1+C
dxx ln|x|+C
dx2x x+C
cosxdx sinx+C
sinxdx cosx+C
shxdx chx+C
chxdx shx+C
dxsin2x ctgx+C
dxch2x thx+C
dxcos2x tgx+C
dxa2+x2 1aarctgxa+C
dxsh2x cthx+C
dxx2±a2 ln|x+x2±a2|+C
dxa2x2 arcsinxa+C
dxa2x2 12aln|a+xax|+C
dxx2a2 12aln|xax+a|+C

Решите примеры:

  1. (2x3)dx
    Спойлер
  2. cos2xdx 
    Спойлер
  3. (2x3)2dx
    Спойлер

Литература

  1. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 459
  2. Лысенко З.М., Конспект лекций по математическому анализу, 2012

Тест

Для решения интегралов нужно знать таблицу первообразных (таблицу интегралов) и свойства интегралов. Попробуйте проверить свои знания.


Таблица лучших: Таблица основных интегралов

максимум из 22 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных