Задача из журнала «Квант» (1992 год, 7 выпуск)
Условие
Три отрезка, выходящие из разных вершин треугольника ABC и пересекающиеся в одной точке M, делят его на шесть треугольников. В каждый из них вписана окружность. Оказалось, что четыре из этих окружностей равны. Следует ли отсюда, что треугольник ABC — правильный, если M — точка пересечения а)медиан, б)высот, в)биссектрис, г)M — произвольная точка внутри треугольника?
Решение
Ответ: а), б), в) да; г) нет.
Назовем треугольники, в которые вписаны окружности равных радиусов, отмеченными. Заметим, что какие-то два из отмеченных треугольников примыкают к одной из сторон треугольника ABC. Пусть, для определенности, это будут треугольники BMD и DMC.
-
Рис. 1 Поскольку равны площади и радиусы вписанных окружностей отмеченных треугольников, равны и их периметры. Поэтому (рис.1) BM=MC, и, следовательно, AB=AC. Пусть AD=m, BE=CF=n, AB=AC=l, BC=a, а треугольник BMF — отмеченный. Тогда из равенства периметров треугольника BMF и BMD получаем 12+n3+2n3=a2+2n3+m3,
т. е. 12+n3=a2+m3.
Пусть X и Y — точки касания вписанных окружностей (см. рис.1) со сторонами BD и BF, DX=x, FY=y. Из свойств отрезков касательной следует, что BM=12−y+n3−y=a2−x+m3−x, и с учетом (∗) получаем x=y. Поскольку ∠ADB — прямой, ∠CFB — тоже прямой, т. е. медиана CF является высотой, и треугольник ABC — правильный.Если отмечен треугольник AME, то, как и раньше, получаем из равенства периметров l2+2m3+n3=a2+2n3+m3, т. е. l−a2=n−m3.
Однако во всяком треугольнике большей стороне соответствует меньшая медиана. Поэтому, если l>a, то n<m, наоборот, при l<a будет n>m, так что равенство (**) возможно лишь при a=l. Итак, и в этом случае утверждение доказано.
Остальные ситуации совпадают с разобранными с точностью до обозначений.
-
Рис. 2 И в этом случае треугольники BMD и CMD равны (рис.2), поскольку ∠BMD=∠CMD (эти углы равны, так как окружности одинаковых радиусов касаются отрезка MD в одной точке). Значит, BD=DC, AB=AC, MF=ME, BF=EC, так что равны треугольники MBF и MEC. Если они отмеченные, то равны и треугольники MBF и MBD (у них общая гипотенуза BM и равные радиусы вписанных окружностей, при этом ∠FBM=∠MBD — в противном случае, фигура MFBD окажется прямоугольником).
Если отмечены равные треугольники AMF и AME, то равны и треугольники AME и BMD (они подобны и имеют одинаковые радиусы вписанных окружностей). Но тогда AD=BE, что и завершает доказательство.
-
Рис. 3 Мы можем считать отмеченными треугольники AMF и AME (рис.3). Но тогда окружности, вписанные в эти треугольники, касаются отрезка AM в общей точке. Отсюда следует, что ∠AME=∠AMF и ∠ABE=∠ACF, т. е. ∠B=∠C и AB=AC. Если отмечен треугольник BMF, то, пользуясь формулой для площади S=rp применительно к треугольникам AMF и FMB, получаем AM+MF+AFAF=MF+BF+BMBF. Применяя к этим треугольникам теорему синусов, перепишем (***) так:sinα+sin(2α+β)cosβ=sinβ+sin(2α+β)cos2β, откуда получаем после преобразований (пользуясь тем, что α+2β=π2), что sin3β=1,т.е.β=π6, т. е. ABC — правильный треугольник.
Если отмечены треугольники BMD и CMD, то , так как точка M — центр вписанной в треугольник ABC окружности, получаем SAMEAE=SCMDCD, что дает (формула S=rp) AE+EM+MAAE=CM+MD+DCCD, после чего, рассуждая как и раньше, приходим к равенству cos2β+sin3β=1+sinβ, из которого находим без труда β=π6. И в этом случае ABC — правильный треугольник.
-
Рис. 4 Треугольник ABC может и не быть равносторонним. Для его построения (рис.4) проведем прямую, перпендикулярную AF, и выберем на ней точку M так, что π2>∠MAF>π3. В построенные на рисунке 4 углы впишем равные окружности с центрами O1 и O2, затем из точки A проведем касательную к окружности O2. Эта касательная пересечет прямую MF, в некоторой точке C. Симметрично отразив картинку относительно прямой MF, получим неправильный равнобедренный треугольник ABC (AC=BC), удовлетворяющий условию задачи.