На горизонтальной плоскости лежат два шарика с массами $m_1$ и $m_2$, скреплённые между собой пружиной с жёсткостью $c$. Плоскость гладкая. Шарики сдвигают, сжимая пружину, затем их одновременно отпускают. Определите периоды возникших колебаний шариков.
Решение
Центр масс системы не должен двигаться (или может двигаться равномерно и прямолинейно), поэтому шарики колеблются в противофазе с одинаковой частотой, а их отклонения $x_1$ и $x_2$ от положения равновесия удовлетворяют соотношению $c_1x_1 = c_2x_2$, где $c_1$ и $c_2$ — коэффициенты жесткости соответствующих кусков пружины длиной $l_1$ и $l_2$ ($l_1$ и $l_2$ — расстояния от шариков до центра масс системы; $$\left.l_1 = l \frac{m_2}{m_1+m_2}, l_2 = l \frac{m_1}{m_1+m_2}\right).$$
Удлинение $^1/q$-й части пружины всегда в $q$ раз меньше удлинения всей пружины, т.е. $^1/q$-я часть пружины имеет жёсткость в $q$ раз большую, чем жёсткость всей пружины. Поэтому $c = \frac{m_1+m_2}{m_2}$. Отсюда следует, что период колебаний шариков
$$T = 2\pi\sqrt{\frac{m_1m_2}{\left(m_1+m_2\right)c}}.$$
Интересно проверить ответ, взяв какой-нибудь предельный случай. Предположим, что масса $m_2$ очень велика: $m_2\gg m_1$. Тогда шарик с массой $m_1$ должен колебаться так, как если бы второй шар был не подвижно закреплён, и $T = 2\pi\sqrt{\frac{m_1}{c}}$.
На плоскости отмечены $2n + 1$ различных точек. Занумеруем их числами $1, 2, \ldots, 2n + 1$ и рассмотрим следующее преобразование $R$ плоскости: сначала делается симметрия относительно первой точки, затем относительно второй и т. д. — до $\left(2n + 1\right)$-й точки.
а) Покажите, что y этого преобразования $R$ есть единственная «неподвижная точка» (точка, которая отображается в себя).
Рассмотрим всевозможные способы нумерации наших $2n + 1$ точек (числами $1, 2, \ldots, 2n + 1$). Каждой такой нумерации соответствует свое преобразование плоскости $R$ и своя неподвижная точка. Пусть $F$ — множество неподвижных точек всех этих преобразований.
б) Укажите множество $F$ для $n = 1$.
в) Какое максимальное и какое минимальное количество точек может содержать множество $F$ при каждом $n = 2, 3, \ldots$
Решение
Фиксируем произвольную систему координат.
Пусть точки $A\left(x; y\right)$ и $A^*\left(x^*; y^*\right)$ симметричны относительно точки $A’\left(x’; y’\right)$. Тогда $x’ = \frac{\left(x + x^*\right)}{2}, y’ = \frac{\left(y + y^*\right)}{2},$ откуда $$x^* = 2x’ — x, y^* = 2y’ — y.$$
Таким образом, точка с координатами $\left(x; y\right)$ при симметрии относительно точки с координатами $\left(x’; y’\right)$ переходит в точку с координатами $\left(2x’ — x; 2y’ — y\right)$.
Поэтому при нашем преобразовании $R$ точка с координатами $\left(x; y\right)$ перейдет в точку с координатами $\left(-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1}; -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1}\right),$ где $\left(x_i; y_i\right)$ — координаты $i$-й из заданных $2n + 1$ точек.
a) Для неподвижной точки $\left(x; y\right)$ преобразования $R$ эти координаты определяются однозначно из условия $$ \begin{cases}-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1} = x \\ -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1} = y\end{cases}$$ и равны $\left(x_1 — x_2 + \cdots — x_{2n} + x_{2n + 1}; y_1 — y_2 + \cdots — y_{2n} + y_{2n + 1}\right)$ или $$\left(\sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} x_i; \sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} y_i\right) \tag{*}$$ Утверждение a) доказано.
б) Пусть сначала данные точки $X_1, X_2, X_3$ не лежат на одной прямой. Если точка $A_1$ после симметрии относительно точек $X_1, X_2, X_3$ отобразилась в себя (см. рисунок), то $X_1, X_2, X_3$ — середины отрезков $A_1A_2, A_2A_3, A_3A_1$, где $A_2 = SX_1\left(A_1\right)$, $A_3 = SX_2\left(A_2\right)$. Значит, $\left[A_1A_2\right]$, $\left[A_2A_3\right]$, $\left[A_3A_1\right]$ — медианы треугольника $A_1A_2A_3$, так что точки $A_1, A_2, A_3$ можно получить из точек $X_1, X_2, X_3$ гомотетией с центром в центре тяжести $O$ треугольника $X_1X_2X_3$ и коэффициентом $(—2)$. Этим положение точек $A_i \left(i = 1, 2, 3\right)$ определяется однозначно. С другой стороны, каждая точка $A_i$ при соответствующей композиции симметрий относительно точек $X_i$, отображается в себя (например, $SX_2\left(SX_1\left(SX_3\left(A_3\right)\right)\right) = A_3$). Поэтому множество $F$ — это три точки, получающиеся из данных точек $X_1, X_2, X_3$ гомотетией с центром $O$ и коэффициентом $(-2)$. Легко видеть, что, если данные точки $X_1, X_2, X_3$ лежат на прямой, ответ получается, в разумном смысле, тот же.
в) Глядя на выражение $(*)$, нетрудно сообразить, что в множестве $F$ точек не больше, чем число способов выбрать из $2n + 1$ данных точек те $n$ точек, перед абсциссами которых в выражении $(*)$ будет стоять знак «минус», то есть не больше, чем $C^n_{2n + 1}$. Очевидно, эта оценка точна (возьмите, например, $2n + 1$ точек на одной прямой с целыми координатами $1, 2, 2^2, \ldots, 2^{2n}$).
Оценим теперь число неподвижных точек снизу. Спроектируем данные $2n + 1$ точек на прямую так, чтобы никакие две точки не попали в одну. На этой прямой введем координаты и перенумеруем точки в порядке возрастания координат: $x_1 < x_2 < \ldots < x_{2n + 1}$. Поставим $n$ минусов перед первыми $n$ числами и рассмотрим сумму $- x_1 — x_2 — \cdots — x_n + x_{n + 1} + \cdots + x_{2n + 1}$: она будет соответствовать некоторой неподвижной точке из нашего множества $F$. Далее произведем следующую операцию: выберем пару чисел $x_i$ и $x_{i + 1}$ таких, что перед $x_i$ стоит минус, а перед $x_{i + 1}$ — плюс, и поменяем у них знаки (на первом шаге, очевидно, $i = n$). Каждая такая операция приводит к сумме, соответствующей неподвижной точке из множества $F$, причем, поскольку после каждой такой операции сумма уменьшатся, все эти неподвижные точки различны. Всего таких операций (вне зависимости от их порядка) мы можем произвести $n\left(n + 1\right)$, что уже даст нам $n\left(n + 1\right) + 1$ неподвижных точек. Значит, в $F$ точек не меньше $n\left(n + 1\right) + 1$. Ровно столько неподвижных точек получится, если, например, снова взять $2n + 1$ точек на прямой с целыми координатами $-n, -\left(n — 1\right), \ldots, -1, 0, 1, 2, \ldots, n — 1, n$. При всевозможных способах расстановки $n$ «минусов» перед некоторыми из них максимальное значение суммы этих чисел равно $2 \cdot \left(1 + 2 + \cdots + n\right) = n(n + 1)$, минимальное значение равно $-n\left(n + 1\right)$, причем сумма может принимать любое четное значение между числами $-n\left(n + 1\right)$ и $n\left(n + 1\right)$ — всего $n\left(n + 1\right) + 1$ значений.
а) На плоскости расположены четыре круга так, что первый касается второго в точке $A$, второй — третьего в точке $B$, третий — четвертого в точке $C$ и четвертый — первого в точке $D$ (рис. 2). Докажите, что через четыре названные точки можно провести окружность или прямую.
б) *В пространстве расположены четыре шара так, что первый касается второго в точке $A$, второй — третьего в точке $B$, третий — четвертого в точке $C$ и четвертый — первого в точке $D$. Докажите, что через четыре названные точки можно провести окружность или прямую.
в) *В пространстве расположены четыре шара так, что каждый касается трех других. Докажите, что шесть точек касания принадлежат одной сфере или одной плоскости.
Решение
а) Прежде всего, что если какие-то три из точек $A$, $B$, $C$, $D$ лежат на одной прямой, то и четвертая точка лежит на той же прямой (рис. 1).
рис. 1
Пусть все четыре круга касаются внешним образом (рис. 2) и пусть $AA_{1}$, $BB_{1}$, $CC_{1}$, $DD_{1}$ — отрезки общих касательных.
рис. 2
Из $\widehat{A_{1}A}D = \widehat{D_{1}D}A$, $\widehat{D_{1}D}C = \widehat{C_{1}C}D$, $\widehat{B_{1}B}C = \widehat{C_{1}C}B$ и $\widehat{A_{1}A}B = \widehat{B_{1}B}A$ следует $\widehat{A} + \widehat{C} = \widehat{B} + \widehat{D}$; значит, около четырехугольника $ABCD$ можно описать окружность.
В случае, когда не все четыре круга касаются внешним образом (рис. 3), рассуждения аналогичны.
рис. 3.
б) Если центры шаров лежат в одной плоскости, то и все точки касания лежат в этой плоскости, так что в этом случае задача б) сводится к задаче а).
Если же центры $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ — не в одной плоскости, проведем плоскость через три точки касания, например $A$, $B$, $C$ (рис. 4), и докажем, что четвертая точка $D$ принадлежит этой плоскости.
рис. 4.
Пусть $h_{1}$, $h_{2}$, $h_{3}$, $h_{4}$ — расстояния от точек $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ до плоскости $(ABC)$, а $R_{1}$, $R_{2}$, $R_{3}$, $R_{4}$ — радиусы шаров. Ясно, что $\frac{h_{1}}{h_{2}} = \frac{R_{1}}{R_{2}}$, $\frac{h_{2}}{h_{3}} = \frac{R_{2}}{R_{3}}$, $\frac{h_{3}}{h_{4}} = \frac{R_{3}}{R_{4}}$ (см. рис. 4). Перемножая эти отношения, получаем $\frac{h_{1}}{h_{4}} = \frac{R_{1}}{R_{4}} = \frac{\mid O_{1}D\mid}{\mid O_{4}D\mid}$, что и означает принадлежность точки $D$ плоскости $(ABC)$.
Таким образом, плоскость $(ABC)$ пересекает шары по четырем кругам, касающимся, соответственно, друг друга в точках $A$, $B$, $C$, $D$ так, как сказано в пункте а). Из этого следует утверждение задачи б).
в) Пусть $A$ — точка касания первого и второго, $B$ — первого и третьего, $C$ — первого и четвертого, $D$ — второго и третьего, $E$ — второго и четвертого, $F$ — третьего и четвертого шаров.
По доказанному в пункте б) точки $A$, $C$, $F$, $D$ лежат на одной окружности или прямой. Точки $A$, $E$, $F$, $B$ обладают тем же свойством.
У этих двух четверок точек есть две общие точки: $A$ и $F$. Поэтому если одна из четверок лежит на прямой, все шесть точек лежат в одной плоскости.
Если же эти четверки лежат на двух окружностях, находящихся в разных плоскостях и имеющих общую хорду $AF$, то через эти окружности можно провести сферу; центром этой сферы является точка пересечения перпендикуляров к плоскостям этих окружностей (эти перпендикуляры лежат в плоскости, проходящей через центры окружностей и середину их общей хорды $AF$).
М655.На столе у чиновника Министерства околичностей лежит $n$ томов Британской энциклопедии, сложенных в несколько стопок. Каждый день, придя на работу, чиновник берет из каждой стопке по одному тому и складывает взятые тома в новую стопку, затем располагает стопки по количеству томов (в невозрастающем порядке) и заполняет ведомость, в которой указывает количество томов в каждой стопке. Кроме сказанного выше, чиновник никогда ничего не делает.
а) Какая запись будет сделана в ведомости через месяц, если общее кол-во томов $n = 3, n = 6, n = 10$ (начальное расположение произвольно)
б) Докажите, что если общее число томов $n=\frac{1}{2} k (k+1),$ где $k$ — натуральное, то, начиная с некоторого дня, ведомость будет заполняться одинаковыми записями.
в) Исследуйте, что будет через много дней работы при других значениях $n.$
Решение
При $n = 3$ возможны всего три расположения: $(1, 1, 1)$ — три стопка по одному тому; $(3)$ — одна стопка из трех томов; $(2, 1)$ — одна стопка из двух томов и одна стопка из одного тома.
рис. 1
Стрелки на рисунке 1 показывают, во что каждое расположение переходит на следующий день. Из рисунка видно, что, с чего бы мы не начали, не позже, чем через два дня (что записано как $T = 2$), возникает расположение $(2, 1),$ и затем оно будет повторяться. На рисунке 2 показан аналогичный граф для $n = 6.$ Число $m$ возможных расположений здесь равно $11.$ Не позже, чем через $T = 6$ дней после начала работы возникнет расположение $(3, 2, 1),$ и затем оно будет повторяться. Аналогичный граф для $n=10$ имеет $m=42$ вершины, и не позже, чем через $T=12$ дней после начала возникнет расположение $(4, 3, 2, 1),$ и затем оно будет повторяться.
рис. 2
Разумеется, далеко не каждый ориентированный граф из каждой вершины которого выходят одна стрелка, обладает единственной «конечной» вершиной, то есть не всегда, идя по его стрелкам, мы придем в одну и ту же вершину и там останемся (рис. 3). Граф может распадаться на отдельные части, не связанные между собой ни одной стрелкой, может содержать циклы. Поэтому тот факт, что при $n=\frac{1}{2} k (k+1),$ начиная с некоторого дня, получается одно и то же расположение совсем не очевиден, и мы сейчас его докажем. Рассмотрим сразу произвольное $n.$
рис. 3
Вообразим четверть бесконечного листа бумаги в клетку (рис. 4), клетки которого пронумерованы парами натуральных чисел слева направо и снизу вверх: клетка с номером $(x, y)$ стоит в столбце $x$ и в строке $y.$ Изготовим $n$ фишек и разместим их в клетках нашей бумаги следующим образом: в первом столбце столько фишек, сколько томов в первой стопке, во втором столько, сколько томов во второй стопке и т.д. Размещение фишек на рисунке 4 соответствует расположению $(8, 3, 3, 1, 1, 1).$ Преобразование, которое каждый день выполняет чиновник, можно представить в виде трах операций:
Уберем фишки, находящиеся в самой нижней строке.
Передвинем оставшиеся фишки на одну клетку вниз и на одну клетку вправо.
Теперь выложим на бумагу убранные фишки, но не на нижнюю строку, а на самый левый столбец (освободившийся).
рис. 4
В результате этих операций рисунок 4 перейдет в рисунок 5. Правда, результат действия наших трех операций отличается от того, что делает чиновник, тем, что в конце дня чиновник еще упорядочивает стопки по убыванию, но мы пока что не будем делать таких преобразований.
При нашей последовательности операций фишка $(x, y)$ перейдет в клетку $(1, x),$ если $y = 1,$ или $(x+1,y-1),$ если $y>1.$
рис. 5
Назовем $i$-й диагональю совокупность тех клеток $(x, y),$ для которых $x+y=i+1.$ Под действие нашего преобразования фишки, находящиеся на $i$-й диагонали, не сойдут с нее, а будут перемещаться по правилу: $$(1, i)\longrightarrow(2, i-1)\longrightarrow(3, i-2)\longrightarrow…\longrightarrow(i, 1)\longrightarrow(1, i)$$
Теперь дополним преобразование, тем, что в каждой строке, где это возможно, сдвинем все фишки на одно место влево, тем самым упорядочим стопки как надо. Теперь все наше преобразование точно соответствует тому, что делает чиновник. Сдвиг влево означает, что для некоторых фишек величина $x+y$ может уменьшаться, но она по-прежнему не может увеличиваться. Но эта величина — натуральное число, значит она не может уменьшаться бесконечное количество раз. Наступит такой момент, что для всех фишек величина $x+y$ уже не будет уменьшаться. Таким образом каждая фишка займет свою диагональ. Докажем, что тогда для всякого $i$ будет выполняться следующее условие: если $i$-я диагональ не полностью заполнена фишками, то в $(i+1)$-й диагонали нет ни одной фишки.
Докажем от противного: пусть в $i$-й диагонали есть пустая клетка, а в $(i+1)$-й диагонали есть хоть одна фишка. Фишки на $i$-й диагонали (если они есть) передвигаются, попадая через каждые $i$ шагов на прежние места. фишка на $(i+1)$-й диагонали передвигается, попадая через каждые $(i+1)$ шагов на прежнее место. Посмотрим, что происходит в моменты $0, (i+1), 2(i+1), 3(i+1),…,i(i+1).$ Фишка на $(i+1)$-й диагонали в эти моменты оказывается там же, где и была в нулевой момент. Пустое место на $i$-й диагонали как бы двигается вместе с фишками, значит оно побывает на всех клетках $i$-й диагонали, а значит побывает слева от фишки на $(i+1)$-й диагонали. Но тогда эта фишка должна сдвинуться влево, что невозможно, так как мы предположили, что такие перемещения уже закончились.
Что же это за расположение фишек, при котором за неполной диагональю может идти только пустая? Если $n=\frac{1}{2} k (k+1)$, то такое расположение, очевидно, только одно: все диагонали от 1-й до $k$-й заполнены фишками, а все остальные — пустые. Это доказывает утверждение б), так как все фишки не покидают своих диагоналей, и не сдвигаются влево с какого-то момента.
Пусть теперь $n\neq\frac{1}{2} k (k+1)$. Тогда существует такое $k,$ что $$\frac{1}{2} k (k+1)<n<\frac{1}{2} (k+1) (k+2).$$
Положим $r=n-\frac{1}{2} k (k+1).$ В этом случае расположение фишек, при котором за неполной диагональю следуют пустые такое: все диагонали от 1-й до $k$-й заполнены фишками, на $(k+1)$-й диагонали находится $r$ фишек, а следующие диагонали пусты. Фишки, находящиеся на $(k+1)$-й диагонали перемещаются по ней, попадая через каждые $(k+1)$ шагов на свои прежние места. Это ответ на вопрос в).
Несколько кружков одинакового размера положили на стол так, что никакие два не перекрываются. Докажите, что кружки можно раскрасить в четыре цвета так, что любые два касающиеся кружка будут окрашены в разные цвета. Найдите расположение кружков, при котором трех цветов для такой раскраски недостаточно.
Доказательство
Доказательство возможности требуемой раскраски проведем индукцией по числу кружков [latex]n[/latex]. При [latex]n\leq 4[/latex] утверждение очевидно. Предположим, что оно справедливо для любого расположения [latex]k[/latex] кружков. Пусть на столе лежит [latex]k+1[/latex] кружков. Зафиксируем на плоскости произвольную точку [latex]M[/latex] и рассмотрим кружок, центр [latex]O[/latex] которого находится на наибольшем расстоянии от [latex]M[/latex] (если таких кружков несколько, возьмем любой из них). Нетрудно убедиться, что выбранного кружка касается не более двух других (центры всех кружков лежат в круге [latex]\left ( M, \left | OM \right | \right )[/latex] — рис. 1). Отбросим кружок с центром [latex]O[/latex] и раскрасим нужным образом в четыре цвета оставшиеся [latex]k[/latex] кружков (по предположению индукции это можно сделать). Вернем теперь кружок с центром [latex]O[/latex] на место. Поскольку он касается не более трех из уже покрашенных кружков, его можно раскрасить в тот цвет, который не был использован при раскраске касающихся его соседей.
Утверждение доказано.
Рисунок 1.
На рисунке 2 изображены 11 кружков, для нужной раскраски которых трех цветов недостаточно. Действительно, предположив, что эти кружки можно раскрасить тремя цветами, получим, что кружки [latex]A, B, C, D, E[/latex] должны быть окрашены одинаково. Но это невозможно, поскольку кружки [latex]A[/latex] и [latex]E[/latex] касаются.