Функция [latex]F[/latex] называется первообразной функцией функции [latex]f[/latex] на промежутке [latex]\bigtriangleup[/latex], если [latex]F[/latex] дифференцируема на [latex]\bigtriangleup[/latex] и в каждой точке этого промежутка производная функции [latex]F[/latex] равна значению функции [latex]f[/latex]:
[latex]f(x)=\frac{1}{\sqrt{x}}[/latex], при [latex]x>0[/latex]
Спойлер
[latex]F(x)=2\sqrt{x}[/latex]
[свернуть]
[latex]f(x)=-\frac{1}{x^2}[/latex], при [latex]x\ne0[/latex]
Спойлер
[latex]F(x)=\frac{1}{x}[/latex]
[свернуть]
[latex]f(x)=cos(x)[/latex]
Спойлер
[latex]F(x)=sin(x)[/latex]
[свернуть]
Ниже приведены графики функции [latex]f(x)=cos(x)[/latex](красный цвет) и ее первообразной[latex]F(x)=sin(x)[/latex](зеленый цвет) при значении произвольной постоянной [latex]C=0[/latex].
Литература
Лысенко З.М., Конспект лекций по математическому анализу, 2012
Зарубин В.С., Интегральное исчисление функций одного переменного. — М.: Изд-во МГТУ им. Н.Э. Баумана,1999, Стр. 14
Кудрявцев Л.Д., Курс Математического Анализа, 2003. — М.: Дрофа, Т.1. Стр. 453-454
Тест
Лимит времени: 0
Навигация (только номера заданий)
0 из 4 заданий окончено
Вопросы:
1
2
3
4
Информация
Определение первообразной
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 4
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
С ответом
С отметкой о просмотре
Задание 1 из 4
1.
Количество баллов: 4
Первообразной функции [latex]f(x)=cos(x)[/latex] будет функция
Задание 2 из 4
2.
Количество баллов: 4
У заданной на отрезке функции любые две первообразные отличаются на
Задание 3 из 4
3.
Количество баллов: 1
Сколько первообразных имеет функция?
Задание 4 из 4
4.
Количество баллов: 1
Вставьте пропущенное слово
Всякая … в некотором промежутке функция имеет первообразную в этом промежутке.
Функция [latex]y=C,[/latex] где [latex]C[/latex] — постоянно непрерывна на [latex]R,[/latex] так как [latex]\Delta y=0[/latex]при любом[latex]x.[/latex] Функция [latex]y=x[/latex]непрерывна на [latex]R,[/latex] так как [latex]\Delta y=\Delta x \to 0[/latex]при[latex]\Delta x \to 0.[/latex] Поэтому функция[latex]y=a_{k}x^k,[/latex] где [latex]k\in\mathbb{N},[/latex] непрерывна на [latex]R[/latex] как произведение непрерывных функций. Так как многочлен [latex]P_{n}(x)[/latex]есть сумма непрерывных функций вида [latex]a_{k}x^k\ \ \ \left ( k=\overline{0,n} \right ),[/latex] то он непрерывен на[latex]R.[/latex]
[свернуть]
Рациональная функция, т. е. функция вида [latex]f(x)=\frac{P_{n}(x)}{Q_{m}(x)},[/latex] где [latex]P_{n}(x),Q_{m}(x)[/latex] — многочлены степени [latex]n[/latex] и [latex]m[/latex] соответственно, непрерывна во всех точках, которые не являются нулями многочлена [latex]Q_{m}(x).[/latex]
Спойлер
В самом деле, если [latex]Q_{m}(x)\neq 0,[/latex] то из непрерывности многочленов [latex]P_{n}[/latex] и [latex]Q_{m}[/latex] следует непрерывность функции [latex]f[/latex] в точке [latex]x_{0}.[/latex]
[свернуть]
Утверждение 2
Если [latex] x \in \left ( — \frac{\pi}{2} , \frac{\pi}{2} \right ) [/latex] и [latex] x\neq 0,[/latex] то [latex] \cos{x} <\frac{\sin\ x}{x} < 1 \ \ \ \ \left ( 1 \right ).[/latex]
Спойлер
Рассмотрим в координатной плоскости круг единичного радиуса
с центром в точке [latex] O [/latex] (рис. 12.1). Пусть [latex] \angle AOB=x,[/latex] где [latex]0<x<\frac{\pi}{2} [/latex].
Пусть [latex] C [/latex] — проекция точки [latex] B[/latex] на ось [latex]Ox[/latex], [latex] D [/latex] луча [latex] OB [/latex] и прямой, проведенной через точку [latex] A [/latex] перпендикулярно оси [latex] Ox.[/latex] Тогда [latex]BC=sin x, DA=tgx.[/latex]
Пусть [latex]S_{1}, S_{2}, S_{3}[/latex] — площади треугольника [latex]AOB,[/latex] сектора[latex]AOB[/latex] и треугольника [latex]AOD[/latex] соответственно. Тогда
и тогда функция [latex]y=\log_{a}{x}[/latex] — монотонна и непрерывна(как обратная)
Утверждение 7
Функции, заданные формулами
[latex]sh\ x =\frac{e^x-e^{-x}}{2},\ \ \ \ ch\ x=\frac{e^x+e^{-x}}{2}[/latex]
называют соответственно гиперболическим синусом и гиперболическим косинусом.
Эти функции определены и непрерывны на [latex]\mathbb{R}[/latex], причем [latex]sh\ x[/latex]— нечетная функция, а [latex]ch\ x[/latex] — четная функция.
Спойлер
[свернуть]
Из определения функций [latex]sh\ x[/latex] и [latex]ch\ x[/latex] следует, что
Функция [latex]th\ x[/latex] определена и непрерывна на [latex]\mathbb{R},[/latex] а функция [latex]cth\ x[/latex] определена и непрерывна на множестве [latex]\mathbb{R}[/latex] с выколотой точкой [latex]x= 0.[/latex] Обе функции нечетные.
Спойлер
[свернуть]
Утверждение 8
Пусть функции [latex]u(x)[/latex] и [latex]v(x)[/latex] определены на промежутке[latex]\Delta =\left ( a,b \right ),[/latex] причем для всех[latex]x \in \Delta[/latex] выполняется условие [latex]u(x)>0,[/latex] Тогда функцию [latex]y,[/latex] определяемую формулой
[latex]y=e^{v(x)\ln{u(x)}}[/latex]
будем называть показательно-степенной и обозначать
[latex]y=u(x)^{v(x)}[/latex]
Таким образом, исходя из определения
[latex]u(x)^{v(x)}=e^{v(x)\ln{u(x)}}[/latex]
Если [latex]u,v[/latex] — функции, непрерывные на [latex]\Delta,[/latex] то функция [latex]u^v[/latex] непрерывна на [latex]\Delta[/latex] как суперпозиция непрерывных функций [latex]e^t[/latex] и [latex]t = v(x)\ln{u(x)}[/latex].
Тест
Лимит времени: 0
Навигация (только номера заданий)
0 из 5 заданий окончено
Вопросы:
1
2
3
4
5
Информация
Непрерывность элементарных функций
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
максимум из 16 баллов
Место
Имя
Записано
Баллы
Результат
Таблица загружается
Нет данных
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Выберите правильные утверждения
Правильно
Неправильно
Задание 2 из 5
2.
Установите соответствие
Элементы сортировки
Нечетная функция
Четная функция
$$sh\ x$$
$$ch\ x$$
Правильно
Неправильно
Задание 3 из 5
3.
Вставьте пропущенное слово в определение
Многочлен является (непрерывной) функцией на всей числовой прямой
Правильно
Неправильно
Задание 4 из 5
4.
Закончите определение: Пусть функции [latex]u(x)[/latex] и [latex]v(x)[/latex] определены на промежутке[latex]\Delta =\left ( a,b \right )[/latex] , причем для всех[latex]x \in \Delta[/latex] выполняется условие [latex]u(x)>0[/latex]. Тогда функцию [latex]y[/latex], определяемую формулой
[latex]y=e^{v(x)\ln{u(x)}}[/latex]
будем называть…
Правильно
Неправильно
Задание 5 из 5
5.
Оцените насколько нравится вам данный тест, где 1 — совсем ненравится,а 5 — очень нравится
Тогда $ \forall x\in U_{\delta}(x_{0}) $ существует точка $ \xi $, принадлежащая интервалу с концами $ x_{0} $ и $ x $ такая, что $ \frac{\varphi(x)}{\psi(x)}=\frac{\varphi^{n+1}(\xi)}{\psi^{n+1}(\xi)} $
Доказательство
Пусть, например, $ x \in (x_{0},x_{0}+\delta) $. Тогда применяя к функциям $ \varphi $ и $ \psi $ на отрезке $ [x_{0},x] $ теорему Коши и учитывая, что $ \varphi(x)=\psi(x)=0 $ по условию, получаем
Применяя теорему Коши последовательно к функциям $ \varphi» $ и $ \psi» $,$ \varphi^{(3)} $ и $ \psi^{(3)} $,…,$ \varphi^{(n)} $ и $ \psi^{(n)}$ на соответствующих отрезках получаем
где $ x_{0}<\xi<\xi_{n}<…<\xi_{2}<\xi_{1}<x<x_{0}+\delta $
Равенство доказано для случая, когда $ x \in(x_{0},x_0+\delta) $, аналогично рассматривается случай, когда $ x \in(x_0-\delta,x_{0}) $.
Теперь, когда лемма доказана, приступим к доказательству самой теоремы:
Из существования $ f^{(n)}(x_{0}) $ следует, что функция $ f(x_{0}) $ определена и имеет производные до $ (n-1) $ порядка включительно в $ \delta $ окрестности точки $ x_{0} $
Обозначим $ \varphi(x)=r_{n}(x),\psi(x)=(x-x_{0})^{n} $, где $ r_{n}(x)=f(x)-P_{n}(x) $.
Функции $ \varphi(x) $ и $ \psi(x) $ удовлетворяют условиям леммы, если заменить номер $ n+1 $ на $ n-1 $
Используя ранее доказанную лемму и учитывая, что $ r_{n}^{(n-1)}(x_{0})=0 $ получаем
Так как выполняются равенства $ r_{n}(x_{0})=r_{n}'(x_{0})=…=r_{n}^{(n)}(x_{0})=0 $
Таким образом, правая часть формулы $ (*) $ имеет при $ x\to x_{0} $ предел, равный нулю, а поэтому существует предел левой части этой формулы, так же равный нулю. Это означает, что $ r_{n}(x)=o((x-x_{0})^{n}),x\to x_{0} $, то есть $ f(x)-P_{n}(x)=o((x-x_{0})^{n}) $, что и требовалось доказать.
Пример:
Разложить функцию $ y=\cos^{2}(x) $ в окрестности точки $ x_{0}=0 $ по Тейлору с остатком в форме Пеано.
Решение
Табличное разложение косинуса имеет следующий вид:
Метод нахождения пределов функций, раскрывающий неопределённости вида $latex \frac{0}{0} $ или $latex \frac{\infty}{\infty} $ Правило позволяет заменить предел отношения функций пределом отношения их производных.
1. Докажем теорему для случая, когда пределы функций равны нулю.
Существует $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} &s=1$
Вывод: Тогда существует $latex \lim\limits_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow a} \frac{f'(x)}{g'(x)} &s=1$
Доказательство: Доопределим функции в точке $latex a $ нулём. Из 1 условия следует, что $latex f(x) $ и $latex g(x) $ непрерывны на отрезке $latex [a,x] $, где $latex x $ принадлежит рассматриваемой окрестности точки $latex a $. Применим обобщённую формулу конечных приращений (Коши) к $latex f(x) $ и $latex g(x) $ на отрезке $latex [a,x] $ $latex \exists \xi\in [a,x]:\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}&s=1 $ Так как $latex f(a)=g(a)=0 $ получим, что $latex \forall x $ $latex \exists \xi \in [a,x]:\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Пусть предел отношения производных равен $latex A $. Следовательно: $latex \lim\limits_{x \to a} \frac{f'(\xi(x))}{g'(\xi(x))}=\lim\limits_{y \to a} \frac{f'(y)}{g'(y)}=A &s=1$, так как $latex \lim\limits_{x \to a} \xi(x)=a &s=1$
2. Докажем теорему для случая, когда пределы функций равны бесконечности.
Условия:
$latex f(x) $ и $latex g(x) $ дифференцируемы при $latex x>a $
Существует конечный $latex \lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)}=A &s=1$
Вывод: Тогда существует $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$ Доказательство: Из условия 2 следует, что $latex \exists a_{1}>a:\forall x>a_{1} \to |f(x)|>1,|g(x)|>1 $, и поэтому $latex f(x)\neq 0,g(x)\neq0 $ при $latex x>a_{1} $. По определению предела (условие 4) для заданного числа $latex \varepsilon >0 $ можно найти $latex \delta_{1}=\delta_{1}(\varepsilon)\geq a_{1} $ такое, что для всех $latex t>\delta_{1} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f'(t)}{g'(t)}<A+\frac{\varepsilon}{2} &s=1$ Фиксируя $latex x_{0}>\delta_{1} $ выберем, пользуясь условием 2 число $latex \delta_{2}>x_{0} $
такое, чтобы при всех $latex x>\delta_{2} $ выполнялись неравенства: $latex \left |\frac{f(x_{0})}{f(x)}<\frac{1}{2}\right | &s=1$ и $latex \left |\frac{g(x_{0})}{g(x)}<\frac{1}{2}\right | &s=1$ Для доказательства теоремы нужно доказать, что существует такое $latex \delta $, что при всех $latex x>\delta $ выполняется неравенство: $latex A-\varepsilon<\frac{f(x)}{g(x)}<A+\varepsilon (*) &s=1$ Число $latex \delta $ будет выбрано ниже. Считая, что $latex x>\delta $, применим к функциям $latex f $ и $latex g $ на отрезке $latex [x;x_{0}] $ обобщённую формулу конечных приращений (Коши). $latex \exists \xi \in [x_{0};x]: \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Преобразуем левую часть неравенства: $latex \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f(x)}{g(x)}(\varphi(x))^{-1} &s=1$, где $latex \varphi(x)=\frac{1-\frac{g(x_{0})}{g(x)}}{1-\frac{f(x_{0})}{f(x)}}=1+\beta(x) &s=1$ Заметим, что $latex \beta(x)\to0 $ при $latex x\to+\infty $ в силу условия 2, поэтому $latex \forall \varepsilon>0 \exists \delta\geq\delta_{2}: $ $latex \forall x>\delta\to|\beta(x)|<\frac{\frac{\varepsilon}{2}}{|A|+ \frac{\varepsilon}{2}}(**) &s=1$ Так как $latex \xi>x_{0}>\delta_{1} $, то для всех $latex x>\delta_{2} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f(x)}{g(x)} (\varphi(x))^{-1}<A+\frac{\varepsilon}{2} &s=1$ Если $latex x>\delta $, то $latex \varphi(x)>0 $, и поэтому неравенство равносильно следующему: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))< $ $latex \frac{f(x)}{g(x)}<(A+\frac{\varepsilon}{2})(1+\beta(x)) &s=1$ Используя неравенство $latex (**) $, получаем: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))=$ $latex A-\frac{\varepsilon}{2}+(A-\frac{\varepsilon}{2})\beta(x) \geq $ $latex (A-\frac{\varepsilon}{2})-&s=1-(|A|+\frac{\varepsilon}{2})|\beta(x)|> $ $latex A-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=A-\varepsilon &s=1$ Аналогично находим: $latex (A+\frac{\varepsilon}{2})(1+\beta(x))\leq $ $latex A+\frac{\varepsilon}{2}+(|A|+\frac{\varepsilon}{2})|\beta(x)|< A+\varepsilon &s=1$
Таким образом для всех $latex x>\delta $ выполняется неравенство $latex (*) $, а это означает, что справедливо утверждение: $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$
Примеры:
Пример 1. Найти $latex \lim\limits_{x \to 1}\frac{3x^{10}-2x^{5}-1}{x^{3}-4x^{2}+3} &s=1$ Обозначим $latex f(x)=3x^{10}-2x^{5}-1 $ , $latex g(x)=x^{3}-4x^{2}+3 $. Так как $latex \lim\limits_{x\to1}f(x)=\lim\limits_{x\to1}g(x)=0 $, воспользуемся правилом Лопиталя для ситуации $latex \frac{0}{0} $. $latex f'(x)=30x^{9}-10x^{4} $, $latex f'(1)=20 $ $latex g'(x)=3x^{2}-8x $, $latex g'(1)=-5 $ По доказанной теореме: $latex \lim\limits_{x\to1}\frac{f(x)}{g(x)}=\lim\limits_{x\to1}\frac{f'(x)}{g(x’)}=\frac{20}{-5}=-4 &s=1$
Ответ: -4.
Пример 2. Доказать, что [latex] \lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=0,\alpha>0 [/latex]
Применяя правило Лопиталя для ситуации $latex \frac{\infty}{\infty} $, получим: [latex]\lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=[/latex][latex]\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{\alpha x^{\alpha-1}}=[/latex][latex] \lim\limits_{x\to\infty}\frac{1}{\alpha x^{\alpha}}=0[/latex]
Доказано.
Источники:
Конспект по курсу математического анализа Лысенко З.М.
Существует $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} $
Правильно
Неправильно
Задание 4 из 10
4.
Какая теорема применяется при доказательстве раскрытия неопределённости вида $latex \frac{0}{0} $?
Правильно
Неправильно
Задание 5 из 10
5.
В процессе доказательства теоремы для раскрытия неопределённости вида $latex \frac{0}{0} $ $latex \xi $ рассматривается нами как…
Правильно
Неправильно
Задание 6 из 10
6.
В доказательстве теоремы для случая $latex \frac{\infty}{\infty}$ утверждение , что $latex \exists a_{1} > a : \forall x>a_{1} \to |f(x)|>1 , |g(x)|>1 $ следует из условия о…
Правильно
Неправильно
Задание 7 из 10
7.
Правило Лопиталя позволяет заменить предел отношения функций …
Интегрирование функций вида $latex R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}})&s=2$
Интегралы типа $latex \int R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}}),$
где a, b, c, d — действительные числа, $latex r_{k}\in \mathbb{Q}(k=\overline{1,n})$, сводятся к интегралам от рациональной функции путем подстановки
$latex \frac {ax+b}{cx+d}=t^{p},$
где p — наименьшее общее кратное знаменателей чисел $latex r_{1},r_{2},…r_{n}.$
Действительно, из подстановки $latex \frac{ax+b}{cx+d}=t^{p}$ следует, что $latex x=\frac{b-dt^{p}}{ct^{p}-a}$ и $latex dx=-\frac {dpt^{p-1}(ct^{p}-a)-(b-dt^{p})cpt^{p-1}}{(ct^{p}-a)^{2}}dt$, т.е. x и dx выражаются через рациональные функции от t. При этом и каждая степень дроби $latex \frac{ax+b}{cx+d}$ выражается через рациональную функцию от t.
2) Найти интеграл $latex I=\int\frac{dx}{\sqrt[3]{(x+2)^{2}}-\sqrt{x+2}}.$ Наименьшее общее кратное знаменателей дробей $latex \frac{2}{3}$ и $latex \frac{1}{2}$ есть 6. Сделав замену