M1518. Высоты тетраэдра пересекаются в одной точке

Задачи из журнала «Квант» (1995 год, выпуск 5)

Условие

Высоты тетраэдра пересекаются в одной точке. Докажите, что эта точка — основание одной из высот и три точки, делящие другие высоты в отношении 2:1, считая от вершин, лежат на одной сфере.

Доказательство

Пусть [latex]M[/latex] — точка пересечения медиан треугольника [latex]ABC, P[/latex]- точка пересечения высот тетраэдра, [latex]AA_{1}[/latex] — высота тетраэдра из вершины [latex]A[/latex].

[latex]MA_{2}||A_{3}A_{1}[/latex] и [latex]AA_{2}:A_{2}A_{1}=2:1[/latex].

Угол [latex]MA_{2}P[/latex] — прямой, так что точка [latex]A_{2}[/latex] лежит на сфере с диаметром [latex]MP[/latex]. Аналогично рассматриваются остальные случаи.

Д.Терешин

M1515. О целых корнях суперпозиции трех квадратных трехчленов

Задача из журнала «Квант» (1995 год, выпуск 5)

Условие

Известно, что [latex]f(x),g(x),h(x)[/latex] — квадратные трехчлены. Может ли уравнение [latex]f(g(h(x)))=0[/latex] иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Решение

Предположим, что числа 1, 2, 3, 4, 5, 6, 7 и 8 — корни уравнения [latex]f(g(h(x)))=0[/latex].

Если прямая [latex]x=a[/latex] — ось параболы, задаваемой уравнением [latex]y=h(x)[/latex], то [latex]h(x_{1})=h(x_{2})[/latex] тогда и только тогда, когда [latex]x_{1}+x_{2}=2a[/latex].

Многочлен [latex]f(g(x))[/latex] имеет не более четырех корней, но числа [latex]h(1), h(2),…, h(8)[/latex] являются его корнями, следовательно, [latex]a=4.5[/latex] и [latex]h(4)=h(5),h(3)=h(6),h(2)=h(7),h(1)=h(8)[/latex]. Кроме того, мы попутно доказали, что числа [latex]h(1),h(2),h(3),h(4)[/latex] образуют монотонную последовательность. Аналогично, рассматривая трехчлен [latex]f(x)[/latex] и его корни [latex]g(h(1)), g(h(2)), g(h(3)), g(h(4))[/latex], получаем, что [latex]h(1)+h(4)=2b, h(2)+h(3)=2b[/latex], где прямая [latex]x=b[/latex] — ось параболы, задаваемой уравнением [latex]y=g(x)[/latex]. Но из уравнения [latex]h(1)+h(4)=h(2)+h(3)[/latex] для [latex]h(x)=Ax^{2}+Bx+C[/latex] следует, что [latex]A=0[/latex]. Противоречие.

Ответ: уравнение [latex]f(g(h(x)))=0[/latex] не может иметь корни 1, 2, 3, 4, 5, 6, 7 и 8.

С.Токарев

M1656. Оценка числа доминирующих вершин в вершинно-взвешенном графе

Условие

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше.)

Ответ: 25.

Решение

Учеников, которые учатся лучше большинства своих друзей, назовем хорошими. Пусть [latex]x[/latex] — число хороших учеников, [latex]k[/latex] — число друзей у каждого ученика. Лучший ученик класса является лучшим в [latex]k[/latex] парах друзей, а любой другой хороший ученик — не менее, чем в [latex][k/2]+1 \geqslant (k+1)/2[/latex] парах (здесь квадратные скобки обозначают целую часть числа). Поэтому хорошие ученики являются лучшими не менее чем в [latex]k+(x-1)(k+1)/2[/latex] парах.
Это число не может превышать числа всех друзей в классе, равного [latex]30k/2=15k[/latex]. Отсюда [latex]k+(x-1)(k+1)/2 \leqslant 15k[/latex] или

[latex]x\leq28\frac{k}{k+1}+1[/latex] [latex](1)[/latex]

Заметим далее, что

[latex]\frac{k+1}{2}\leq30-x[/latex] [latex](2)[/latex]

поскольку число учеников, лучше которых учится наихудший из хороших, не превышает 30.

Правая часть неравенства [latex](1)[/latex] возрастает с ростом [latex]k[/latex], а неравенство [latex](2)[/latex] равносильно условию

[latex]k\leq59-2x[/latex] [latex](3)[/latex]

Из [latex](1)[/latex] и [latex](3)[/latex] следует, что [latex]x\leq28*\frac{59-2x}{60-2x}+1[/latex], или

[latex]x^{2}-59x+856\geq0[/latex] [latex](4)[/latex]

К задаче M1656

Наибольшим целым [latex]x[/latex], удовлетворяющим [latex](4)[/latex] и условию [latex]x \leq 30[/latex], является [latex]x=25[/latex]. Итак, число хороших учеников не превышает 25, что можно проиллюстрировать на графике.

Покажем, что оно может равняться 25. Занумеруем учеников числами от 1 до 30 в порядке ухудшения успеваемости и расположим номера в таблице [latex]6\times 5[/latex] так, как показано на рисунке.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

Пусть пара учеников является парой друзей, если их номера расположены одним из трех способов:

  1. в соседних строках и в разных столбцах;
  2. в одном столбце и один из номеров при этом находится в нижней строке;
  3. в верхней строке.

При этом, как нетрудно проверить все требуемые условия выполнены.

С.Токарев

M1452. Общая касательная к касающимся внешним образом окружностям

Условие

Окружности [latex]S_1[/latex] и [latex]S_2[/latex] касаются внешним образом в точке [latex]F[/latex]. Прямая [latex]l[/latex] касается [latex]S_1[/latex] и [latex]S_2[/latex] в точках [latex]A[/latex] и [latex]B[/latex] соответственно. Прямая, параллельная прямой [latex]l[/latex], касается [latex]S_2[/latex] в точке [latex]C[/latex] и пересекает [latex]S_1[/latex] в точках [latex]D[/latex] и [latex]E[/latex]. Докажите, что а) точки [latex]A[/latex], [latex]F[/latex] и [latex]C[/latex] лежат на одной прямой; б) общая хорда окружностей, описанных около треугольников [latex]ABC[/latex] и [latex]BDE[/latex], проходит через точку [latex]F[/latex].

К задаче M1452

Решение а) Первое решение

Так как касательные к окружности [latex]S_2[/latex] в точках [latex]B[/latex] и [latex]C[/latex] параллельны, то [latex]BC[/latex] — ее диаметр, и ∠BFC=90°. Докажем, что и ∠AFB=90°. Проведем через точку [latex]F[/latex] общую касательную к окружностям, пусть она пересекает прямую [latex]l[/latex] в точке [latex]K[/latex]. Из равенства отрезков касательных, проведенных к окружности из одной точки, следует, что треугольники [latex]AKF[/latex] и [latex]BKF[/latex] равнобедренные. Следовательно,
∠AFB=∠AFK+∠KFB=∠FAB+∠FBA=180°/2=90°

Решение а) Второе решение

Рассмотрим гомотетию с центром [latex]F[/latex] и коэффициентом, равным [latex]-r_2/r_1[/latex], где [latex]r_1[/latex] и [latex]r_2[/latex] — радиусы окружностей [latex]S_1[/latex] и [latex]S_2[/latex]. При этой гомотении [latex]S_1[/latex] переходит в [latex]S_2[/latex], а прямая [latex]l[/latex] — касательная к [latex]S_1[/latex] — переходит в [latex]S_2[/latex]. Следовательно, точка [latex]A[/latex] переходит в точку [latex]C[/latex], поэтому точка [latex]F[/latex] лежит на отрезке [latex]AC[/latex].

Решение б)

Ниже мы покажем, что центр окружности [latex]BDE[/latex] находится в точке [latex]A[/latex]. Поскольку центр окружности [latex]ABC[/latex] есть середина [latex]AC[/latex] (∠ABC=90°), а ∠BFC=90° (см. первое решение п. а)), отсюда будет следовать, что [latex]BF[/latex] есть перпендикуляр, опущенный из общей точки окружностей [latex]BDE[/latex] и [latex]ABC[/latex] на прямую, соединяющею их центры. А это и значит, что прямая [latex]BF[/latex] содержит их общую хорду.

Итак, нам достаточно доказать, что [latex]AD=AE=AB[/latex]. Первое из этих равенств очевидно(ибо касательная к [latex]S_1[/latex] в точке [latex]A[/latex] параллельна [latex]DE[/latex]). Пусть [latex]r_1[/latex] и [latex]r_2[/latex] — радиусы [latex]S_1[/latex] и [latex]S_2[/latex]. Опуская перпендикуляр [latex]AP[/latex] на [latex]DE[/latex], найдем, что [latex]AP=BC=2r_2[/latex], и по теореме Пифагора для треугольников [latex]APD[/latex] и [latex]O_1PD[/latex], где [latex]O_1[/latex] — центр [latex]S_1[/latex] [latex]PD^2=O_1D^2-O_1P^2=r_1^2-(2r_2-r_1)^2=4r_1r_2-4r_2^2[/latex] [latex]AD^2=AP^2+PD^2=4r_1r_2[/latex]

Но легко найти, что общая касательная [latex]AB[/latex] окружностей [latex]S_1[/latex] и [latex]S_2[/latex] равна [latex]2\sqrt{r_1r_2}[/latex].

А. Калинин, В. Дубровский

M1498. Решение одной системы n-уравнений второй степени


Условие

Решите при каждом [latex]n>1[/latex] систему уравнений
[latex]\left\{\begin{matrix}\alpha =\frac{\pi (2m+1)}{2(n+1)} x_{1}x_{n}=2, \\x_{2}(x_{n}-x_{1})=1, \\ …, \\x_{n-1}(x_{n}-x_{n-2})=1, \\x_{n}(x_{n}-x_{n-1})=1 \end{matrix}\right.[/latex]

Решение

При нескольких первых значениях [latex]n(n=2,3,4,5)[/latex] систему удается решить «в лоб»: положить [latex]x_{n}=z[/latex], можно вырвзить через [latex]z[/latex] последовательно [latex]x_{1},x_{2},…,[/latex], и наконец из последнего уравнения системы получить уравнение вида [latex]P_{n}(z)=0[/latex], где [latex]P_{n}[/latex] — многочлен. Например, при [latex]n=2[/latex] получим [latex]z=\pm \sqrt{3}[/latex], при [latex]n=3[/latex] — [latex]z=\pm \sqrt{2\pm \sqrt{2}}[/latex], при [latex]n=4[/latex] в ответе появляется корень из [latex]5[/latex]. Это может привести на мысль сделать тригонометрическую заменну переменной (и даже — какую именно). Положим [latex]x_{n}=2\cos \alpha[/latex]. Тогда [latex] x_{1}=\frac{1}{\cos \alpha }, x_{2}=\frac{1}{2\cos \alpha-\frac{1}{\cos \alpha } }=\frac{\cos \alpha }{\cos 2\alpha }:[/latex] и далее по индукции — предположив, что [latex] x_{k}=\frac{\cos (k-1)\alpha }{\cos k\alpha },[/latex] найдем [latex] x_{k+1}=\frac{1}{2\cos \alpha -\frac{\cos (k-1)\alpha }{\cos k\alpha }}=\frac{\cos k\alpha }{\cos (k+1)\alpha },[/latex] поскольку [latex]2\cos \alpha \cos \beta =\cos (\beta +\alpha )+\cos (\beta -\alpha )[/latex]. Последнее уравнение системы даст: [latex] x_{n}=\frac{\cos (n-1)\alpha }{\cos n\alpha }=2\cos \alpha [/latex] и преобразуется к виду [latex]\cos (n+1)\alpha =0[/latex]. Откуда [latex] \alpha =\frac{\pi (2m+1)}{2(n+1)};[/latex] при этом

[latex] x_{k}=\frac{\cos (k-1)\alpha }{\cos k\alpha }(k=1,2, \ldots,n).(*)[/latex]

Разные значения [latex]\cos \alpha[/latex] получаются при [latex]0< \frac{\pi (2m+1)}{2(n+1)} < \pi[/latex], т.е. при [latex]m=0,1, \ldots,n [/latex]. Однако не все они годятся: чтобы ни одно из чисел [latex]\cos k\alpha (k=1, \ldots,n)[/latex] не обращалось в [latex]0[/latex], необходимо и достаточно, чтобы [latex]2m+1[/latex] и [latex]n+1[/latex] не имели общего делителя, большего [latex]1[/latex] (если [latex]2m+1=dp[/latex], [latex]n+1=dp[/latex], [latex]d> 1[/latex], то [latex]p[/latex] — нечетно и [latex]\cos q\alpha =\cos \frac{\pi dpq}{2dq}=\cos \frac{p\pi}{2}=0[/latex]; легко доказать и обратное).

Итак, к строчке [latex](*)[/latex], дающей ответ надо добавить условие: НОД [latex](2m+1,n+1)=1[/latex], [latex]0\leq m\leq n[/latex].

Нужно еще показать, что найдены все решения. Из сказанного выше следует, что нет других решений, для которых [latex]\left | x_{n} \right |\leq 2[/latex]. Вот один из способов доказать, что решения с [latex]\left | x_{n} \right |> 2[/latex] быть не может.

Обозначим [latex]\cosh\alpha =\frac{e^{\alpha }+e^{-\alpha }}{2}[/latex], где [latex]e[/latex] — основание натуральных логарифмов — что, впрочем, здесь не важно: нам понадобиться лишь, что [latex]e> 0[/latex] и что, как и для [latex]\cos \alpha [/latex], [latex]2\cosh\alpha \cosh\beta = \cosh(\alpha +\beta )+\cosh(\alpha -\beta ) [/latex]

(Тем, кто знаком с комплексными числами, напомним, что [latex]\cos \alpha =\frac{e^{i\alpha }+e^{-i\alpha }}{2} [/latex], так что «гиперболический косинус» [latex]\cosh\alpha[/latex] — это просто [latex]\cos (i\alpha )[/latex].) Рассуждая так же, как и выше, — положив [latex]x_{n}=\pm 2\cosh\alpha [/latex], — найдем, что [latex]\cosh(n+1)\alpha =0[/latex]. Но функция [latex]\cosh[/latex] вообще не обращается в [latex]0[/latex] ([latex]\cosh\alpha \geq 1[/latex] при любом [latex]\alpha[/latex]), так что решений с [latex]\left | x_{n} \right |> 2[/latex] нет.

К задаче M1498 Рассказ об этой задаче был бы неполон без объяснения, откуда возникла такая странная на первый взгляд система уравнений. Ее источник — геометрия. Построим равнобедренный треугольник [latex]ABC[/latex] с боковыми сторонами [latex]AB=BC=1[/latex] и углами при основании [latex]\alpha= \frac{\pi }{2(n+1)}[/latex]. Пусть [latex]K[/latex] — середина основания. Отметим на отрезке [latex]KC[/latex] точки [latex]M_{1},…,M_{n-1}[/latex] такие, что [latex]\angle M_{k-1}BM_{k}=\alpha [/latex] (здесь и ниже [latex]k=1,2,…,n[/latex]; [latex] M_{0}=K [/latex], [/latex] M_{k}=C[/latex], см. рисунок).

Треугольники [latex]ABM_{k}[/latex] и [latex]CM_{k-1}B[/latex] подобны (их углы: [latex]\alpha [/latex], [latex](k+n)\alpha [/latex], [latex](n+1-k)\alpha [/latex]), так что [latex]AM_{k}\cdot M_{k-1}C =AB\cdot BC [/latex]. Положим [latex]x_{k}=AM_{k}[/latex], в частности, [latex]x_{n}=AC[/latex] тогда [latex]M_{k-1}C=x_{n}-x_{k-1}[/latex], поэтому [latex]x_{k}(x_{n}-x_{k-1})=1[/latex] и (поскольку [latex]AM_{0}=x_{0}/2[/latex]) [latex]x_{1}x_{n}=2[/latex]. Легко видеть, что (см. рисунок) [latex]AM_{k}=\cos (k-1)\alpha /\cos k\alpha [/latex], в частности, [latex]AM_{1}=1/\cos \alpha [/latex], [latex]AC=2\cos \alpha [/latex]. Таким образом, мы получим иллюстрацию «основного» решения системы с [latex]m=1[/latex].

Заметим, что наш рисунок — фрагмент правильного [latex]2(n+1)[/latex]-угольника со стороной [latex]1[/latex]; [latex]x_{k}[/latex] — это кусочки, высекаемые на одной диагонали [latex]AC[/latex] диагоналями, выходящими из вершины [latex]B[/latex]. Решения системы, отвечающие значемиям [latex]m> 1[/latex], можно интерпретировать аналогичным образом как кусочки диагоналей ( или их продолжений ) правильной [latex]2(n+1)[/latex]-угольной звезды.

Эта геометрическая интерпретация позволяет выяснить, при каких [latex]n[/latex] решения системы выражаются в квадратных радикалах ( через рациональные числа ): при тех, для которых можно построить правильный [latex](n+1)[/latex]-угольник ( а значит, и [latex]2(n+1)[/latex]-угольник ) циркулем и линейкой. Это — в точности те [latex]n[/latex], для которых число решений системы — степень двойки. Вот несколько первых значений [latex]n:2,3,4,5,7,9,11,14,15,16,19,23,…[/latex] ( см. статью А.Кириллова «О правильных многоугольниках, функции Эйлера и числах Ферма», «Квант» №6 за 1994 год).

И.Васильев