Критерий Коши существование предела

7983_201

Огюстен Луи Коши(1789-1857)

Прежде чем  ознакомиться с критерием, вспомним, что значит выражение: «Функция удовлетворяет в точке условию Коши».

Определение:

Будем говорить, что функция $latex=f$ удовлетворяет в точке $latex=a$, условию Коши, если она определена в некоторой проколотой окрестности  этой точки и $latex=\forall \varepsilon > 0,\exists \delta =\delta _{\varepsilon }> 0:\forall {x}’,{x}»\in U_{\delta }^{\circ}(a)\Rightarrow |f({x}’)-f({x}»)|< \varepsilon$ (где $latex=U^{\circ}_{\delta }(a)$ -проколотая    $latex=\delta$-окрестсность точки $latex=a$). $latex=0< |x’-a|< \delta$ $latex=0< |x»-a|< \delta$

Теорема(Критерий Коши):

  Для того чтобы функция $latex=f(x)$ имела конечное передельное значение в точке $latex=x=a$, необходимо и достаточно, чтобы функция удовлетворяла условию Коши в точке $latex=a$.

Доказательство

Необходимость

Докажем, что $latex=f(x)$ удовлетворяет в точке $latex=x=a$ условию Коши. Пусть $latex=\exists \lim_{x\rightarrow a}f(x)=A:\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0:\forall x:0< |x-a|< \delta \Rightarrow |f(x)-A|< \frac{\varepsilon }{2}$ $latex=\forall {x}’,{x}»\in U_{\delta }^{\circ}(a):$ $latex=|f({x}’)-f({x}»)|=|(f({x}’)-A)+(A-f({x}»))|\leq |f({x}’)-A|+|f({x}»)-A|< \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon$

Достаточность:

Предположим, что выполняется условие Коши в точке $latex=a$ . Воспользуемся определением предела функции по Гейне: $latex=\lim_{n\rightarrow a}x_{n}=a\Rightarrow \lim_{n\rightarrow \infty } f(x_{n})=A$. Пусть $latex=\left \{ x_{n}\right \}^{\infty }$ -произведение последовательности $latex=\in U_{\delta }^{\circ}(a)$ и $latex=\lim_{n\rightarrow \infty } x_{n}=a$ . Докажем, чтo $latex=\left \{ f(x_{n}) \right \}_{n=1}^{\infty }$ не зависит от выбранного $latex=\left \{ x_{n} \right \}$. Согласно условию Коши мы имеем следующее: $latex=\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0:{x}’,{x}»\in U_{\delta }^{\circ}(a)\Rightarrow |f({x}’)-f({x}»)|< \varepsilon$ т.к. $latex=\lim_{n\rightarrow \infty }x_{n}=a( \forall \varepsilon > 0,\exists N _{\varepsilon }:\forall n\geq N _{\varepsilon } :|x_{n}-a|< \varepsilon )$ для $latex=\delta _{\varepsilon }:\exists N_{\varepsilon }:\forall n\geq N_{\varepsilon }:0< |x_{n}-a|< \delta _{\varepsilon }$ $latex=\forall m\geq N_{\varepsilon }\Rightarrow 0< |x_{m}-a|< \delta _{\varepsilon }$ $latex=x_{n},x_{m}\in U_{\delta }^{\circ}(a)\Rightarrow |f(x_{n})-f(x_{m})|< \varepsilon$ -следует из условия Коши. $latex=\forall \varepsilon > 0,\exists N_{\varepsilon }:\forall n,m\geq N_{\varepsilon }\Rightarrow |f(x_{n})-f(x_{m})|< \varepsilon$ -$latex=\left \{ f(x_{n}) \right \}$ фундаментальная$latex=\Rightarrow$ по Критерию Коши $latex=\left \{ f(x_{n}) \right \}$-сходящаяся. Покажем, что все последующие $latex=\left \{ f(x_{n}) \right \}$ будут сходится к одному и тому же числу А. $latex=\left \{ f(x_{n}) \right \}\rightarrow A$ $latex=x_{n}\rightarrow a\sim f(x_{n})\rightarrow A$ $latex={x}’_{n}\rightarrow {a}’\sim f({x}’_{n})\rightarrow {A}’$ $latex=x_{1},{x}’_{1},x_{2},{x}’_{2},…\rightarrow a\sim f(x_{1}),f({x}’_{1}),f(x_{2}),f({x}’_{2}),…\rightarrow A$ Теорема доказана.

Рекомендации:

Учебники :

  • Кудрявцев Л.Д. «Математический анализ» Том 1,Глава 1,§ 4, Тема 4.9 «Критерий Коши существование предела функций» стр.81-84;
  • Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления»  Том 1, Глава 2, § 2 «Предел функции» стр.115-136;
  • Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть 1,Глава 4, § 2 «Понятие предельного значения функции» стр.103-110.

Сборники задач:

  • Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание,исправленное, Отдел 1, § 5 «Предел функции» стр.47-72;
  • Дороговцев А.Я. «Математический анализ» Глава 2, § 3 «Подполедовательности и частичные пределы.Верхний и нижний пределы последовательности.Фундоментальные последовательности и критерий Коши» стр.38-41.

"Критерий Коши существование предела"

В этом тесте предоставлены вопросы по пройденной теме. Если внимательно изучили материал, следовали всем данным ссылкам и рекомендациям,то вам не составит труда выполнить этот тест.

Таблица лучших: "Критерий Коши существование предела"

максимум из 24 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Бесконечно малые функции

Если [latex]\lim_{x\rightarrow a }f(x)=0[/latex], то функция [latex]f(x)[/latex] называется бесконечно малой при [latex]x\rightarrow a[/latex].

Свойства

  1. Сумма (разность) конечного числа бесконечно малых функций при [latex]x\rightarrow a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  2. Доказательство
    Пусть [latex]f_{1}(x),f_{2}(x),..,f_{n}(x)[/latex] бесконечно малые функции при [latex]x\rightarrow a[/latex]. Тогда существуют числа [latex]\delta _{1},\delta _{2},..,\delta _{n}[/latex] и число [latex]\varepsilon >0[/latex] такие что
    [latex]|x-a|<\delta _{1},|x-a|<\delta _{2},..,|x-a|<\delta _{n}[/latex] (1)
    что влечет за собой условия
    [latex]|f_{1}(x)|<\frac{\varepsilon }{n},|f_{2}(x)|<\frac{\varepsilon }{n},..,|f_{n}(x)|<\frac{\varepsilon }{n}[/latex] (2).
    Если [latex]\delta =\min\begin{Bmatrix}\delta _{1};\delta _{2};..;\delta _{n}\end{Bmatrix}[/latex], то условие [latex]|x-a|<\delta [/latex] усиливает группу условий (1) что влечет за собой группу условий (2). Следовательно
    [latex]\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|\leqslant |f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|\\|f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|<\sum_{1}^{n}\frac{\varepsilon }{n}=\varepsilon\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|<\varepsilon [/latex]

  3. Произведение бесконечно малой функции [latex]f(x)[/latex] на ограниченную [latex]g(x)[/latex] в некоторой проколотой окрестности точки [latex]a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  4. Доказательство
    Так как функция [latex]g(x)[/latex] ограничена, то для [latex]x[/latex] удовлетворяющих условию
    [latex]|x-a|<\delta _{1}[/latex] (1)
    существует число
    [latex]C:|g(x)|<C[/latex] (2)
    Так как функция [latex]f(x)[/latex] бесконечно малая, то существует некоторая окрестность [latex]\delta _{2}[/latex] и число
    [latex]\varepsilon >0[/latex] для которых выполняются условия
    [latex]|x-a|<\delta _{2}[/latex] (3)
    и
    [latex]|f(x)|<\frac{\varepsilon}{C}[/latex] (4)
    Выберем [latex]\delta=\min\begin{Bmatrix}\delta _{1};\delta _{2}\end{Bmatrix}[/latex]. Тогда условие [latex]|x-a|<\delta [/latex] более сильное чем (1) и (3) и поэтому оно влечет за собой условия (2) и (4).
    Следовательно [latex]|f(x)g(x)|=|f(x)||g(x)|<\frac{\varepsilon }{C}C =\varepsilon [/latex]

  5. Произведение конечного числа бесконечно малых функций при [latex]x\rightarrow a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  6. Доказательство
    Так как любая бесконечно малая функция [latex]f(x)[/latex] при [latex]x\rightarrow a[/latex] будет ограничена в некоторой [latex]\delta [/latex] окрестности точки [latex]a[/latex], то доказательство сводится к доказательству свойства 2.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 83

Следующая тема →

Свойства границ, связанные с арифметическими операциями и с неравенствами

Свойства пределов, связанные с алгебраическими операциями

Если функции [latex]f(x)[/latex] и [latex]g(x)[/latex] имеют конечные пределы в точке [latex]a[/latex], причем [latex]\lim_{x\rightarrow a}f(x)=A[/latex] и [latex]\lim_{x\rightarrow a}g(x)=B[/latex] то:

  1. [latex]\lim_{x\rightarrow a}(f(x)+g(x))=A+B[/latex]
  2. Доказательство
    Так как функции [latex]f(x)[/latex] и [latex]g(x)[/latex] имеют предел в точке [latex]a[/latex], то при [latex]x\rightarrow a[/latex] величины [latex]h_{f}(x)=A-f(x)[/latex] и [latex]h_{g}(x)=B-g(x)[/latex] будут бесконечно малыми. Отсюда, согласно свойствам бесконечно малых [latex]h_{f}+h_{g}=(A+B)-(f(x)+g(x))[/latex] также будет бесконечно малой величиной. Что в свою очередь означает, что [latex]\lim_{x\rightarrow a}(f(x)+g(x))=A+B[/latex]

  3. [latex]\lim_{x\rightarrow a}(f(x)g(x))=AB[/latex]
  4. Доказательство
    Так как функции [latex]f(x)[/latex] и [latex]g(x)[/latex] имеют предел в точке [latex]a[/latex], то при [latex]x\rightarrow a[/latex] величины [latex]h_{f}(x)=A-f(x)[/latex] и [latex]h_{g}(x)=B-g(x)[/latex] будут бесконечно малыми. Поэтому [latex]g(x)=A-h_{f}(x)[/latex] и [latex]g(x)=B-h_{g}(x)[/latex]. Отсюда
    [latex]\\f(x)g(x)=(A-h_{f})(B-h_{g})\\f(x)g(x)=AB-Ah_{g}-Bh_{f}+h_{f}h_{g}\\AB-f(x)g(x)=Ah_{g}+Bh_{f}-h_{f}h_{g}[/latex]
    Согласно свойствам бесконечно малых, величина в правой части — бесконечно малая. Что в свою очередь означает, что [latex]\lim_{x\rightarrow a}(f(x)g(x))=AB[/latex]

  5. [latex]\lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}[/latex], причем [latex]B\neq 0[/latex]
  6. Доказательство
    Условие [latex]\lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}[/latex] эквивалентно тому, что разность [latex]\frac{A}{B}-\frac{f(x)}{g(x)}[/latex]
    бесконечно малая величина при [latex]x\rightarrow a[/latex]. Покажем, что это утверждение имеет место. Приведем к общему знаменателю, получим [latex]\frac{Ag(x)-Bf(x)}{Bg(x)}[/latex]. Рассмотрим предел числителя дроби.
    [latex]\\\lim_{x\rightarrow a}(Ag(x)-Bf(x))\\A\lim_{x\rightarrow a}g(x)-B\lim_{x\rightarrow a}f(x)\\AB-BA=0\: \Rightarrow \frac{A}{B}-\frac{f(x)}{g(x)}=0[/latex]
    Что в свою очередь означает, что [latex]\lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}[/latex]

Свойства пределов, связанные с неравенствами

  1. Теорема о двух милиционерах
  2. Если [latex]\exists \delta > 0:\forall x\in \dot{U}_{\delta }(a)[/latex] выполняются неравенства [latex]g(x)\leqslant f(x)\leqslant h(x)[/latex] и если [latex]\lim_{x\rightarrow a}g(x)= \lim_{x\rightarrow a}h(x)=A[/latex] то [latex]\exists \lim_{x\rightarrow a}f(x)=A[/latex].
    Доказательство
    Воспользуемся определением предела по Гейне. Пусть [latex]\begin{Bmatrix}x_{n}\end{Bmatrix}[/latex] — последовательность из [latex]\dot{U}_{\delta }(a)[/latex], причем [latex]\lim_{x\rightarrow \infty }x_{n}=a[/latex]. Тогда выполняются условия [latex]g(x_{n})\leqslant f(x_{n})\leqslant h(x_{n})[/latex] и [latex]\lim_{n\rightarrow \infty}g(x_{n})= \lim_{n\rightarrow \infty}h(x_{n})=A[/latex]. Тогда в силу свойств пределов последовательностей [latex]\lim _{n\rightarrow \infty }f(x_{n})=A[/latex]. Следовательно [latex]\lim _{x\rightarrow a }f(x)=A[/latex].
    Теорему можно проиллюстрировать следующим графиком:
    t3pol

  3. Если [latex]\exists\delta >0:\forall x\in \dot{U}_{\delta }(a)[/latex] выполняется неравенство [latex]f(x)\leqslant g(x)[/latex] и если[latex]\lim_{x\rightarrow a}f(x)=A[/latex], [latex]\lim_{x\rightarrow a}g(x)=B[/latex], то [latex]A\leqslant B[/latex].
  4. Доказательство
    Воспользуемся определением предела по Гейне. Пусть [latex]\begin{Bmatrix}x_{n}\end{Bmatrix}[/latex] — последовательность из [latex]\dot{U}_{\delta }(a)[/latex], тогда числа [latex]A[/latex] и [latex]B[/latex] будут пределами последовательности [latex]\begin{Bmatrix}x_{n}\end{Bmatrix}_{1}^{\infty }[/latex] т.е. [latex]\lim_{n\rightarrow \infty }f(x_{n})=A[/latex] и [latex]\lim_{n\rightarrow \infty }g(x_{n})=B[/latex] Тогда в силу свойств пределов последовательностей [latex]A\leqslant B[/latex].

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 81-84

Следующая тема →

Теорема о существовании верхней и нижней грани

Если $latex X \neq \varnothing$ и $latex X$ — ограничено сверху (снизу) в $latex \mathbb{R}$, то $latex \exists \sup X<\infty. (\exists \inf X>-\infty)$

$latex \square$ Докажем случай для supremum’а.

Пусть $latex E$ — множество всех верхних границ множества $latex X$, то есть $latex X\leq E.$ По аксиоме непрерывности $latex \exists c \in \mathbb{R}:X\leq c \leq E.$

71

$latex \left.\begin{matrix}
X\leq c\leq E; \Rightarrow X\leq c;\\X\leq c\leq E; \Rightarrow c\leq E;
\end{matrix}\right\} \Rightarrow c=\sup X<\infty.$ $latex \blacksquare$

Аналогично доказывается существование infimum’а.

Источники:

Конспект по мат.анализу (Лекции Лысенко З.М.)

В.И.Коляда, А.А.Кореновский «Курс лекций по мат.анализу, часть 1» (Одесса «Астропринт» , 2009г.), стр.8.

В.И.Ильин, Э.Г.Позняк «Основы мат.анализа, часть 1, выпуск 2» (Издание четвёртое, переработанное и дополненное, 1982г.) стр.45.

Подробнее на:

Wikiversity

Бином Ньютона

Бином Ньютона — формула, представляющая выражение $latex (a+b)^{n}$ при $latex n>0$  в виде:

$latex (a+b)^{n}=a^{n}+C_{n}^{1}a^{n-1}b+C_{n}^{2}a^{n-2}b^{2}+ $

$latex C_{n}^{3}a^{n-3}b^{3}+\cdots+C_{n}^{n-1}ab^{n-1}+b^{n}$,

где $latex C_{a}^{b}$ — число сочетаний из $latex a$ элементов по $latex b$ элементов.

$latex C_{n}^{k}=\frac {n!}{k!(n-k)!}$.

Докажем верность данного утверждения:

$latex \square$ Доказательство методом математической индукции.

$latex 1)$ Для $latex n= 1 $ :

$latex a+b=C_{1}^{0}a^{1-0}b^{0}+C_{1}^{1}a^{1-1}b^{1}= $

$latex a*1+b*1=a+b.$

Для $latex n=1$ утверждение выполняется.

$latex 2)$ Предположим, что утверждение выполняется для $latex n=k$.

$latex (a+b)^{k}=C_{k}^{0}a^{k-0}b^{0}+C_{k}^{1}a^{k-1}b^{1}+ $

$latex C_{k}^{2}a^{k-2}b^{2}+\cdots+C_{k}^{k-1}a^{1}b^{k-1}+C_{k}^{k}a^{0}b^{k}=$

$latex a^{k}+C_{k}^{1}a^{k-1}b+C_{k}^{2}a^{k-2}b^{2}+\cdots+$

$latex C_{k}^{k-1}a^{1}b^{k-1}+b^{k}=\sum\limits_{i=0}^{k}C_{k}^{i}a^{k-i}b^{i}.$

$latex 3)$ Докажем верность формулы для $latex n=k+1$.

Докажем, что $latex (a+b)^{k+1}=\sum\limits_{i=0}^{k+1}C_{k}^{i}a^{k-i+1}b^{i}$.

$latex (a+b)^{k+1}=(a+b)(a+b)^{k}= $

$latex (a+b)\sum\limits_{i=0}^{k}C_{k}^{i}a^{k-i}b^{i}= $

$latex \sum\limits_{i=0}^{k}C_{k}^{i}a^{k-i+1}b^{i}+\sum\limits_{i=0}^{k}C_{k}^{i}a^{k-i}b^{i+1}$

Вынесем слагаемое при $latex i=0$ из первой суммы:

$latex \sum\limits_{i=0}^{k}C_{k}^{i}a^{k-i+1}b^{i} = a^{k+1}+\sum\limits_{i=1}^{k}C_{k}^{i}a^{k-i+1}b^{i}$

Вынесем слагаемое при $latex i=k$ из последней суммы:

$latex \sum\limits_{i=0}^{k}C_{k}^{i}a^{k-i}b^{i+1}= $

$latex b^{k+1} + \sum\limits_{i=0}^{k-1}C_{k}^{i}a^{k-i}b^{i+1}= $

$latex b^{k+1}+\sum\limits_{i=1}^{k}C_{k-1}^{i}a^{k-i+1}b^{i}$

Прибавим данные суммы:

$latex=a^{k+1}+\sum\limits_{i=1}^{k}C_{k}^{i}a^{k-i+1}b^{i}+ $

$latex b^{k+1}+\sum\limits_{i=1}^{k}C_{k-1}^{i}a^{k-i+1}b^{i}=$

$latex =a^{k+1}+b^{k+1}+ $

$latex \sum\limits_{i=1}^{k}(C_{k}^{i}+C_{k}^{i-1})a^{k-i+1}b^{i}=$

$latex =\sum\limits_{i=0}^{0}C_{k+1}^{i}a^{k-i+1}b^{i}+$

$latex \sum\limits_{i=k+1}^{k+1}C_{k+1}^{i}a^{k-i+1}b^{i}+$

$latex \sum\limits_{i=1}^{k}C_{k+1}^{i}a^{k-i+1}b^{i}=$

$latex =\sum\limits_{i=0}^{k+1}C_{k+1}^{i}a^{k-i+1}b^{i}$ $latex \blacksquare$

Также с помощью бинома Ньютона строится треугольник Паскаля, в котором числа в строке обозначают коэффициенты при соответствующих степенях:

552

Примеры:

$latex 1)$ $latex (a+b)^{3}=a^{3}+3a^{2}b+\frac{3!}{1!*2!}ab^{2}+b{3}= $

       $latex a^{3}+3a^{2}b+3ab^{2}+b^{3}.$

$latex 2)$ $latex (a+b+c)^{4}=?$

$latex (a+b+c)^{4}=(a+(b+c))^{4}= $

$latex a^{4}+a^{3}(b+c)\frac{4!}{3!}+a^{2}(b+c)^{2}\frac{4!}{2!2}+ $

$latex a(b+c)^{3}\frac{4!}{3!}+(b+c)^{4}= $

$latex a^{4}+a^{3}b\frac{4!}{3!}+a^{3}c\frac{4!}{3!}+a^{2}b^{2}\frac{4!}{2!2!}+2a^{2}bc\frac{4!}{2!}+ $

$latex a^{2}c^{2}\frac{4!}{2!2!}+ab^{3}\frac{4!}{3!}+3ab^{2}c\frac{4!}{1*2*3}+$

$latex +3abc^{2}\frac{4!}{1*2*3}+ac^{3}\frac{4!}{3!}+ $

$latex b^{4}+b^{3}c\frac{4!}{3!}+b^{2}c^{2}\frac{4!}{2!2!}+bc^{3}\frac{4!}{3!}+c^{4}=$

$latex =a^{4}+b^{4}+c^{4}+4(a^{3}b+a^{3}c+b^{3}c)+ $

$latex 6(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})+4(b^{3}a+c^{3}a+ c^{3}b)+ $

$latex 12(a^{2}bc+b^{2}ac+c^{2}ab).$

Список литературы:

Тест "Бином Ньютона"

Тестовые вопросы по вышеизложенной теме.

Таблица лучших: Тест "Бином Ньютона"

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных