M1276. О высотах треугольников, пересекающихся в одной точке

Задача из журнала «Квант» (1991 год, 9 выпуск)

Условие

Для данной хорды $MN$ окружности рассматриваются треугольники $ABC$, основаниями которых являются диаметры $AB$ этой окружности, не пересекающие $MN$, а стороны $AC$ и $BC$ проходят через концы $M$ и $N$ хорды $MN$. Докажите, что высоты всех таких треугольников $ABC$, опущенные из вершины $C$ на сторону $AB$, пересекаются в одной точке.

Доказательство

Точки $M$ и $N$ — основания высот треугольника $ABC$, опущенных из вершин $A$ и $B$, поэтому третья высота проходит через точку $H$ их пересечения, причем точки $C$, $M$, $N$ и $H$ лежат на одной окружности $δ$ с диаметром $CH$. Пусть $P$ — центр этой окружности. Заметим, что при движении диаметра $AB$ величина угла $C$ треугольника остаётся неизменной, — она измеряется полуразностью постоянных по величине дуг  $AB$ и $MN$ (см. рисунок). Поскольку хорда $MN$ неподвижна, остаётся неизменной и окружность $δ$ (по которой движутся точка $C$ и диаметрально противоположная ей точка $H$), а тем самым и её центр $P$: диаметр $CH$ — участок интересующей нас высоты — просто вращается вокруг точки $P$.

Cycle

 Е. Куланин

M677. О высоте, медиане и биссектрисе, радиусе вписанной окружности в правильном треугольнике

Задача из журнала «Квант» (выпуск №4, 2001)

Условие

Внутри остроугольного треугольника $ABC$ выбрана точка $M$, являющаяся:

  1.   точкой пересечения медиан;
  2. точкой пересечения биссектрис;
  3. точкой пересечения высот.

Докажите, что если радиусы окружностей, вписанных в треугольники $AMB$, $BMC$, $AMC$ равны, то треугольник $ABC$ — правильный.

Решение

Рис.1
  1.  Площади треугольников $AMB$, $BMC$ и  $AMC$ (Рис.$1$) одинаковы – они равны $\frac{1}{3}S_{ABC}$(докажите это).
    Поскольку площадь $S$ треугольника, его полупериметр $p$ и радиус $r$ вписанной в него окружности связаны соотношением $S = pr$, периметры треугольников $AMB$, $BMC$ и $AMC$ также одинаковы.Предположим теперь, что треугольник $ABC$ – неправильный; пусть, например, $|AB| > |BC|$. Тогда угол $BDA$ – тупой, поэтому $|AM| > |MC|$, так что периметр треугольника $AMB$ больше периметра треугольника $BMC$ – противоречие.

    Рис.2
  2.  Поскольку $\widehat{CBM} = \widehat{CBM}$ и радиусы окружностей, вписанных в треугольники $AMB$ и $BMC$, равны, эти окружности касаются биссектрисы $BM$ в одной и той же точке (Рис.$2$).
    Из этого следует, что все три окружности попарно касаются, и их центры $O_1$, $O_2$ и $O_3$ образуют правильный треугольник, стороны которого перпендикулярны биссектрисам данного треугольника $ABC$. Поэтому, например, $\widehat{BMC} = \frac{\pi + A }{ 2} = \frac{2\pi}{3}$, то есть $\widehat{A}  = \frac{\pi}{3}$. Аналогично доказывается, что $B = C = \frac{\pi}{3}$.

    Рис.3
  3. Как и в задаче $1$, предположим, что треугольник  $ABC$ – неправильный; пусть, например,  $|BC| > |AC|$. Обозначим через $D$ и $E$ точки касания окружностей, вписанных в треугольники $AMB$ и $BMC$ соответственно, со сторонами $AC$ и $BC$ (Рис.$3$).  Поскольку радиусы этих окружностей равны и $\widehat{CAM} = \widehat{CBM}$, $|AD| = |BE|$. Значит,  $|CD| < |CE|$.

С другой стороны, при  нашем предположении $\widehat{B } < \widehat{A}$, так что $\widehat{MCA} = \frac{\pi}{2} – \widehat{A} < \frac{\pi}{2} – \widehat{B} = \widehat{BCM}$. Поэтому $|CD| > |CE|$ – противоречие.

А.Егоров