Loading [MathJax]/jax/output/SVG/jax.js

M2103. Таблица с разными числами в строке и столбце

Условие

Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1,2,,n так, что в каждой строке и в каждом столбце все числа различны. Назовем клетку хорошей, если читсло в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которй во всех строках одинаковое количество хороших клеток?

Решение

Найдем общее количество хороших клеток. В первом столбце их n1 (все, кроме клетки с числом 1), во вторм их n2 (все, кроме клетки с числом 1 и 2) и т.д., в последнем столбце таких клкеток нет. Значит, всего их (n1)+(n2)++1=n(n1)2

Поэтому в каждой строке их должно быть по n12, следовательно, n должно быт ьнечетным.

1 n n1 2
2 1 n 3
3 2 1 4
n1 n2 n3 n
n n1 n2 1

Приведем пример расстановки при нечетном n. Пусть в первой строке записаны числа в порядке 1,n,n1,n2,,2

а каждая следующая строка является циклическим сдвигом предыдущей строки на 1 клетку (см.рис.). Очевидно, в любой строке и в любом столбце каждое из чисел 1,2,,n встречается по одному разу. Рассмотрим m-ю строку (m{1,2,,n}). В ее первых m клетках стоят числа 1,2,,m в обратном порядке, поэтому среди этих клеток ровно [m2] хороших. В ее последних nm клетках(т.е. в столбцах с номерами m+1,m+2,,n) стоят числа m+1,m+2,,n в обратном порядке, поэтому среди этих клеток ровно [nm2] хороших. Так как числа m и nm разной четности, то в m-й строке ровно [m2]+[nm2]=m2+nm212=n12 хороших клеток.

К.Чувилин

M1384. Невырожденность и выпуклость четырехугольников, связанных с центрами вписанного, описанного кругов и ортоцентром треугольника

Условие

ABC — неравнобедренный остроугольный треугольник; O и I — центры описанного и вписанного кругов, H — ортоцентр треугольника. Докажите, что четырехугольники AOIH, BOIH и COIH невырождены и среди них ровно два выпуклых.

Доказательство

Решению предпошлем легко доказываемое предположение:

В треугольнике биссектриса делит пополам угол между высотой и радиусом описанного круга, проведенным в ту же вершину.

Рис. 1 к задаче M1384

Докажем это предположение. Пусть BM — биссектриса угла ABC (рис. 1). Так как OB=OM, то OBM=OMB. Так как точка M — середина дуги AMC, то прямые OM и BD параллельны. Следовательно, DMB=BMO, отсюда OBM=DBM, что и требовалось доказать.

Решение задачи. Покажем вначале, что точки O и H не могут лежать на одной прямой с какой-либо из вершин треугольника (в частности, эти точки не могут совпадать). Действительно, в этом случае выходящие из вершины медиана и высота совпадают, и треугольник оказывается равнобедренным. Отсюда и из леммы уже следует, что AOIH, BOIH и COIH — невырожденные многоугольники (четырехугольники либо треугольники).

Рис. 2 к задаче M1384

Пусть прямая OH пересекает стороны AB и BC треугольника, BC>AB. Для завершения решения достаточно доказать, что точка I лежит внутри той же полуплоскости с границей OH, что и точка B (рис.2). Докажем это.

Обозначим BD=hs. Имеем: CD>AD. Восстановим перпендикуляр к середине отрезка AC, получаем: точка O принадлежит треугольнику BCD. Обозначим через E(K) точку пересечения прямой AI(CI) с прямой OH. Необходимо доказать, что точки на прямой расположены в следующем порядке: O,K,E,H, т.е что OKKH<OEEH. Но биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Отсюда и из леммы получаем: OKKH=COCH,OEEH=AOAH. Доказываемое утверждение можно теперь переписать так: AHAO<CHCO или CH>AH. Но поскольку CD>AD, то CH>AH. Отсюда и следует утверждение задачи.

Замечания:

  • Нетрудно показать, что прямая OH пересекает большую и меньшую стороны треугольника ABC. Значит, выпуклыми являются четырехугольники, соответствующие большему и меньшему его углам.
  • Задача допускает также и алгебраическое решение.

В.Сендеров

M1656. Оценка числа доминирующих вершин в вершинно-взвешенном графе

Условие

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше.)

Ответ: 25.

Решение

Учеников, которые учатся лучше большинства своих друзей, назовем хорошими. Пусть x — число хороших учеников, k — число друзей у каждого ученика. Лучший ученик класса является лучшим в k парах друзей, а любой другой хороший ученик — не менее, чем в [k/2]+1(k+1)/2 парах (здесь квадратные скобки обозначают целую часть числа). Поэтому хорошие ученики являются лучшими не менее чем в k+(x1)(k+1)/2 парах.
Это число не может превышать числа всех друзей в классе, равного 30k/2=15k. Отсюда k+(x1)(k+1)/215k или

x28kk+1+1 (1)

Заметим далее, что

k+1230x (2)

поскольку число учеников, лучше которых учится наихудший из хороших, не превышает 30.

Правая часть неравенства (1) возрастает с ростом k, а неравенство (2) равносильно условию

k592x (3)

Из (1) и (3) следует, что x28592x602x+1, или

x259x+8560 (4)

К задаче M1656

Наибольшим целым x, удовлетворяющим (4) и условию x30, является x=25. Итак, число хороших учеников не превышает 25, что можно проиллюстрировать на графике.

Покажем, что оно может равняться 25. Занумеруем учеников числами от 1 до 30 в порядке ухудшения успеваемости и расположим номера в таблице 6×5 так, как показано на рисунке.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

Пусть пара учеников является парой друзей, если их номера расположены одним из трех способов:

  1. в соседних строках и в разных столбцах;
  2. в одном столбце и один из номеров при этом находится в нижней строке;
  3. в верхней строке.

При этом, как нетрудно проверить все требуемые условия выполнены.

С.Токарев

M2098

Задача М2098

Двое играют в игру, делая ходы по очереди: первый рисует на плоскости многоугольник, не налегающий на уже нарисованные, а второй ответным ходом раскрашивает его в один из 2008 цветов. Второй игрок хочет, чтобы любые два многоугольника, граничащие по отрезку сторны, имели разные цвета. Сможет ли первый игрок помешать ему?

Ответ: сможет

Решение

М2098Докажем индукцией по n, что первый может играть так, что нарисованные им многоугольники будут давать в объединении некоторый многоугольник Pn, на границу которого выходят многоугольники не менее n цветов. Отсюда будет следовать, что никакого конечного числа цветов недостаточно.

База индукции очевидна. Пусть утверждение верно для n=k, докажем его для n=k+1. Из предположения индукции следует, что первый игрок может играть так, чтобы нарисованные многоугольники давали в объединении k многоугольников P(1)k,P(2)k,cdots,P(k)k, на границу каждого из которых выходят многоугольники не менее k цветов. На границе многоугольника P(1)k выделим отрезок Delta1 некоторго цвета 1, на границе многоугольника P(2)k выделим отрезок Delta2 некоторго цвета 2, отличного от 1, и т.д., на границе многоугольника P(k)k выделим отрезок Deltak некоторго цвета k, отличного от уже определенных цветов 1,2,cdots,k1. Пусть теперь первый нарисует многоугольник P, пересекающийся с многоугольником P(i)k по части отрезка Deltai для всех i=1,2,cdots,k (рис.). Второй игрок должен раскрасить многоугольник P в цвет, отличный от цветов 1,2,cdots,k. Тогда на границу многоугольника, являющего объединением многоугольников P,P(1)k,P(2)k,cdots,P(k)k, выходят не менее k+1 цветов. Переход индукции доказан.

Замечания

Строгое доказательство существования многоугольника P из решения задачи далеко не просто (хотя интуитивно все очевидно), оно следует из известной топологической теоремы Жордана.

Отметим, что вопрос, поставленный в задаче, уже рассматривался в «Задачнике «Кванта»» для случая, когда первому игроку позволяется рисовать многоугольники лишь специального вида. Результат этой задачи интресно сопоставить также со знаменитой теоремой о четырех красках, согласно которой для раскрашивания правильным образом любой карты на плоскости достаточно лишь четырех цветов.

Е.Гик, П.Кожевников

M1472

Журнал «Квант» — физико-математический журнал для школьников и студентов

ЯНВАРЬ/ФЕВРАЛЬ 1995 г. №1

Условие.

При каких натуральных n>1 в таблице

1 2 3 n1 n
n 1 2 n2 n1
n1 n 1 n3 n2
3 4 5 1 2
2 3 4 n 1

можно выбрать n разных чисел в разных строках и разных столбцах?

Решение и ответ.

Ответ: при нечетном n — можно, при четном — нельзя.

Будем считать, что таблица состоит из клеток (x;y), где x и y — целые числа от 1 до n, причем в клетке (x;y) стоит число f(x;y) от 1 до n такое, что: f(x;y)=x+y(modn).

Т.е. разность f(x;y)(x+y) делится на n. (Очевидно, это расположение чисел такое же, как в условии).

Если выбраны числа в клетках (xi;yi), стоящих в разных строках и разных столбцах (i=1,2,,n), то среди xi и среди yi каждое число 1,2,,n встречается по разу, поэтому x1++xn=y1++yn=n(n+1)/2.

Если все числа f(xi;yi) различны по модулю n, то и сумма (x1+y1)++(xn+yn)=n(n+1)

должна равняться n(n+1)/2 по модулю n. Но если n чётно, n=2k, то разность 2k(2k+1)k(2k+1)=k(2k+1)

не делится на n=2k, так что выбрать числа требуемым образом нельзя.

Если же n нечетно, то достаточно выбрать числа f(x;y) в клетках x=y, идущих по диагонали, где все они различны (числа 2,4,,2n дают разные остатки при делении на n).

Замечание.

Эта задача — по существу другая формулировка двух более известных:

(1) Можно ли выписать две перестановки чисел 1,2,,n одну под другой так, чтобы суммы чисел по столбцам давали различные остатки от деления на n?
(2) Пусть n штырьков радиолампы и n соответствующих гнезд розетки, в которую она втыкается, расположены по кругу в вершинах правильного n-угольника. Можно ли штырьки и гнезда занумеровать числами 1,2,,n так, чтобы при любом втыкании лампы в розетку ровно один штырек попадал в гнездо с тем же номером?

Ответ. конечно, тот же, что и в задаче M1472.

Н.Васильев, А.Савин