Processing math: 100%

М1654. Задача о медиане и биссектрисе неравнобедренного треугольника

Задача из журнала «Квант» (1998 год, 5 выпуск)

Условие

Через основание L и M биссектрисы BL и медианы BM неравнобедренного треугольника ABC провели прямые параллельно, соответственно, сторонам BC и BA до пересечения с прямыми BM и BL в точка D и E. Докажите, что угол BED прямой.

Рис. 1

Первое решение

Обозначим O=LDME, и пусть точка O лежит внутри треугольника ABC (именно такое расположение было предложено рассмотреть на олимпиаде). ME — медиана треугольника MBC (Рис.1), а значит, и треугольника MDL, т.е. OL=OD. Далее DLB=LBC,MEL=ABL=LBC. Получили: MEL=DLB,OL=OE.

Итак, в треугольнике LED медиана EO равна половине стороны LD. Следовательно, угол DEL прямой, откуда сразу следует утверждение задачи.

Случай внешнего расположения точки O рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.

Рис. 2

Лемма. Пусть B и C — произвольные точки на выходящих из A лучах (Рис.2), BDCK,CEBF. Тогда и EDKF.

Следует из теоремы Фалеса; легко получить его с помощью векторов.

С помощью векторов нетрудно получить и естественное решение исходной задачи.

Второе решение

Рис. 3

Ниже мы будем рассматривать векторы в базисе {a,c}, где a=BC,c=BA, длины этих векторов обозначим через a и c соответственно.

Имеем: BL=c+ca+c(ac)=1a+c(ac+ca).

Обозначим BE=αBL, тогда αBL+EM=BM=12(a+c).

Приравняем проекции левой и правой частей этого равенства на вектор a:αca+c=12, откуда α=a+c2c.

Аналогично, положив BD=βBM, получим βBM+DL=BL; проектируя обе части этого равенства на c, находим β2=aa+c.

Получили BE=a2+a2cc,BD=aa+c(a+c). Таким образом, BEa=12(aa+cc) — это высота треугольника, построенного на единичных векторах aa и cc. Далее, BEa=1a+c(aaa+ccc) — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что BDaBEaBE — и утверждение задачи доказано.

Разумеется, к этому решению можно было подойти более формально: вектор BDBE=a(ac)2(a+c)(aacc) параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: (BD,BE)=a22(1+(a,c)ac),

(BE,BE)=a22(1+(a,c)ac).

А. Акопян, В. Сендеров

M1815. О перпендикулярах в неплоском четырехугольнике

Задача из журнала «Квант»(2002 год, 2 выпуск)

Условие

Общие перпендикуляры к противоположным сторонам неплоского четырехугольника ABCD взаимно перпендикулярны.

Докажите, что они пересекаются.

Решение

Инструментом решения является теорема Менелая для пространственного четырехугольника, утверждающая, что точки X, U, Y, V, взятые на сторонах четырехугольника AB, BC, CD, DA или их продолжениях, лежат в одной плоскости тогда и только тогда, когда AXXBBUUCCYYDDVVA=1.

Для доказательства теоремы Менелая продолжим прямые XU и YV до пересечения с AC. Точки X, U, Y, V лежат в одной плоскости тогда и только тогда, когда все три прямые пересекаются в одной точке P либо параллельны (рис. 1).

Рис. 1

Но в этом случае, применяя теорему Менелая к треугольникам ABC и ACD, получаем AXXBBUUCCPPA=1 и CYYDDVVAAPPC=1. Перемножая эти равенства, получим требуемое соотношение.

Пусть теперь XY – перпендикуляр к сторонам AB и CD, UV – перпендикуляр к AD и BC. При ортогональной проекции на плоскость, параллельную XY и UV, прямой угол между прямыми AB и XY остается прямым. Поэтому четырехугольник ABCD проецируется в прямоугольник ABCD, а прямые XY и UV – в параллельные его сторонам прямые XY и UV (рис. 2). Очевидно, что AXXBBUUCCYYDDVVA=1.

Рис. 2

Следовательно, AXXBBUUCCYYDDVVA=1, и по теореме Менелая точки X, Y, U, V лежат в одной плоскости. Отсюда сразу следует утверждение задачи.

А.Заславский

M648. О диагоналях вписанного четырехугольника

Задача из журнала «Квант» (1980 год, 10 выпуск)

Условие

Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенный из точки пересечения его диагоналей на стороны, лежат на одной окружности.

Решение

Прежде всего заметим, что если ABCD — вписанный четырехугольник с перпендикулярными диагоналями (рис. 1), то подобные треугольники AKB и CKD (K — точка пересечения диагоналей) расположены таким образом, что продолжение высоты, опущенной на гипотенузу одного из них, является медианой другого. (Этот факт, немедленно вытекающий из равенства отмеченных на рисунке 1 углов, по существу уже использовался в решении задач M546 и M592 — см. «Квант», 1980, № 1, 8.)

Рисунок 1

Далее: середины L, P, M, Q сторон четырехугольника ABCD, являясь вершинами прямоугольника (рис. 2), лежат на одной окружности. Покажем, что центр O этой окружности делит пополам отрезок OK (O — центр окружности, в которую вписан наш четырехугольник).

Рисунок 2

Для этого достаточно, например, показать, что четырехугольник LKMO — параллелограмм. Поскольку LK — медиана треугольника AKB, ее продолжение является высотой треугольника CKD, то есть LKDC. Но и OMDC (диаметр, проходящий через середину хорды), поэтому отрезки LK и OM параллельны. Аналогично доказывается параллельность отрезков LO и KM.

Теперь для окончания решения задачи нам достаточно установить, например, что |O1M|=|O1H|, где H — основание перпендикуляра, опущенного из точки K на сторону CD. Но это следует из того, что O1 — середина гипотенузы LM прямоугольного треугольника LMH (рис. 3).

Рисунок 3

Итак, все восемь точек, упомянутых в условиях задачи, лежат на одной окружности. Интересно, что радиус этой «окружности восьми точек» целиком определяется радиусом R данной окружности и величиной |OK|=a. В самом деле, искомый радиус равен половине длины |LM|, а |LM|2=|LP|2+|PM|2=

=14(|AC|2+|BD|2)=
=14(|AK|+|KC|)2+(|BK|+|KD|)2)=
=14(|AB|2+|CD|2+2(|AK||KC|+|BK||KD|))=
=14(|AB|2+|CD|2+4(R2a2))=
=14(4R2+4(R2a2))=2R2a2.

(В этой вкладке мы вначале воспользовались тем, что произведение длин отрезков хорд, пересекающихся в одной и той же точке, постоянно: |AK||KC|=|BK||KD|=(Ra)(R+a)

(рис. 4),

Рисунок 4

а затем, сообразив, что 90=^BCA+^DBC=AB+CD2
и дополнив CD до полуокружности дугой конгруэнтной AB получили равенство |AB|2+|CD|2=(2R)2=4R2
см. рисунок 5)

Рисунок 5

Наметим другое решение. Сделаем гомотетию наших восьми точек с центром в точке K и коэффициентом 2. Тогда утверждение задачи М648 превращается в такую теорему:

Пусть два взаимно перпендикулярных луча с накалом в точке K внутри данной окружности, вращаясь вокруг K, пересекают окружность в переменных точках P и Q. Тогда четвертая вершина T прямоугольника PKQT (точка симметричная точке K относительно середины |PQ|), а также точка S, симметричная точке K относительно прямой PQ, двигаются по окружности концентричной с данной (рис. 6).

Второй факт (про S) следует из первого, так как S симметрична точке T относительно серединного перпендикуляра к |PQ|, а первый (про T) установлен в решении задачи М539 («Квант», 1979, № 11)

Рисунок 6

Эта «теорема о восьми точках» допускает следующее стереометрическое обобщение:

Если три взаимно перпендикулярных луча с началом в фиксированной точке K внутри данной сферы, вращаясь вокруг K, пересекают сферу в переменных точках A, B и C, то точка пересечения медиан треугольника ABC и основание перпендикуляра, опущенного из K на плоскость ABC, двигаются по сфере, центр которой находится в точке O1 отрезка OK (O — центр данной сферы) такой, что |O1K|=13|OK|, а радиус равен 133R22a2, где a=|OK|, R — радиус данной сферы.

Доказать это можно, например, следующим образом.

Пусть D — вершина параллелепипеда, определенного отрезками KA, KB и KC, диагонально противоположная к K. Все точки D лежат на сфере с центром в той же точке O, что у исходной сферы, и радиусом 3R22a2 (см. решение задачи М639 — «Квант», 1969, № 11). При гомотетии с центром K и коэффициентом 13 точка D будет все время переходить в точку пересечения медиан треугольника ABC (докажите!), а точка O перейдет в точку O1. Таким образом, точка пересечения медиан треугольника ABC все время лежит на указанной сфере.

Осталось показать, что проекция точки K на плоскость треугольника ABC также все время лежит на этой сфере. Поскольку отрезки KA, KB и KC взаимно перпендикулярны, проекция точки K совпадет с точкой H пересечения высот треугольника ABC. Утверждение будет доказано, если мы, например, получим равенство |O1H|=|O1M|, где M — точка пересечения медиан треугольника ABC. Для этого заметим, что центр сферы O проектируется в центр Q описанной вокруг треугольника ABC окружности, и воспользуемся таким известным фактом: точки Q, M и H лежат на одной прямой (прямой Эйлера), точка M — между точками Q и H, причем 2|QM|=|MH|. (Если этот факт вам неизвестен, докажите его.) Остальное легко следует из рисунка 7: поскольку |O1K|=13|OK|, а |QM|=13|QH|, точка O1 проектируется в середину отрезка MH, то есть O1 равноудалена от M и H.

Рисунок 7
И. Шарыгин