Задача из журнала «Квант» (2002 год, 6 выпуск)
Условие
Четырехугольник с перпендикулярными диагоналями вписан в квадрат. Диагонали и стороны четырехугольника разделили квадрат на 8 треугольников, попеременно окрашенных в красный и синий цвет (рис.1).
Докажите, что сумма радиусов окружностей, вписанных в красные треугольники равна сумме радиусов окружностей, вписанных в синие треугольники.
Решение
Сначала два вспомогательных факта.
- Диаметр вписанной в прямоугольный треугольник окружности равен разности между суммой его катетов и гипотенузой, т.е. 2r=a+b—c. Обоснование этого полезного утверждения можно усмотреть из рисунка
- Два взаимно перпендикулярных отрезка разделили квадрат на четыре четырехугольнька. Тогда сумма периметров любых двух несоседних из них равна сумме периметров двух других (рис.3).
Обоснуем это. Один из разделяющих отрезков перенесем параллельно себе так, чтобы он прошел через центр квадрата; при этом сумма периметров несоседних четырехугольников останется прежней. То же самое сделаем со вторым отрезком. Но два отрезка, взаимно перпендикулярные и проходящие через центр квадрата, делят его на четыре равных четырехугольника. Теперь рассуждение легко закончить самостаятельно.
Вернемся к условию задачи. На основании утверждения 2 можно заключить, что сумма длин всех катетов красных треугольников равна сумме длин всех катетов синих треугольников. К этому можно добавить, что сумма длин всех гипотенуз красных треугольников равна сумме длин всех гипотенуз синих треугольников. Откуда используя утверждение 1, делаем вывод, что сумма радиусов окружностей, вписанных в красные треугольники, равна сумме радиусов окружностей, вписанных в синие треугольники.