Мера Жордана в n-мерном пространстве

Для начала определим некоторые важные понятия и рассмотрим их свойства.

Клеточное множество в $\mathbb{R}^n$

Пусть задано множество $A$. Совокупность множеств $\left \{ A_1,A_2,…,A_n \right \}$ назовем разбиением множества $A$, если выполнены условия:
1) $A=\bigcup\limits_{i=1}\limits^n A_i$.
2) Множества $ A_1,A_2,…,A_n$ попарно не пересекаются.
Множество
$$
\Pi=\left\{\left(x_1,…,x_n\right):\; a_i\leq x_i < b_i, \;i=\overline{1,n}\right\}
$$
будем называть клеткой в $\mathbb{R}^n$. Пустое множество — тоже клетка, размер которой бесконечно мал.
Множество $A\in\mathbb{R}^n$ называется клеточным, если оно является объединением конечного числа попарно непересекающихся клеток.

Свойства клеточных множеств.

Свойство 1. Пересечение двух клеток есть клетка.

Доказательство показать

Свойство 2. Объединение конечного числа непересекающихся клеточных множеств является клеточным множетсвом

Доказательство показать

Свойство 3. Пересечение двух клеточных множеств есть клеточное множество.

Доказательство показать

Свойство 4. Разность двух клеток есть клеточное множество.

Доказательство показать

Свойство 5. Разность двух клеточных множеств есть клеточное множество.

Доказательство показать

Свойство 6. Объединение конечного числа клеточных множеств есть клеточное множество

Доказательство показать

Мера клеточного множества

Ребром клетки назовем любой из ее составляющих полуинтервалов $\left[a_i,\;b_i\right)$.
Мерой клетки будем называть произведение длин ее ребер: $$ m\left(\Pi\right)=\left(b_1-a_1\right)…(b_n-a_n) $$ Для одномерного случая это будет длина полуинтервала, для двумерного — площадь прямоугольника, для трехмерного — объем параллелепипеда.
Мерой клеточного множества $A$ назовем число:
$$
m\left(A\right)=\sum_{i=1}^pm\left(\Pi_i\right),
$$
где $\Pi_1,…,\Pi_p$ — разбиение множества $A$.
Теперь докажем корректность определения.

Лемма 1. Мера клеточного множества не зависит от способа разбиения этого множества на клетки.

Доказательство показать

Свойства меры клеточных множеств

Свойство 1. Если клеточные множества $A_1,…,A_p$ попарно не пересекаются, то
$$
m\left(\bigcup_{i=1}^pA_i\right)=\sum_{i=1}^pm\left(A_i\right)
$$

Доказательство показать

Свойство 2. Если $A$ и $B$- клеточные множества и $A\subset B$, то
$$
m\left(B\right)=m\left(A\right)+m\left(B\setminus A\right),\; m\left(A\right)\leq m\left(B\right).
$$

Доказательство показать

Свойство 3. Если $A_1,…,A_p$ — клеточные множества, то
$$
m\left(\bigcup_{i=1}^pA_i\right)\leq \sum_{i=1}^pm\left(A_i\right)
$$

Доказательство показать

Внутренностью клеточного множества назовем совокупность всех его внутренних точек, границей клетки — совокупность всех ее ребер.

Свойство 4. Для любого клеточного множества $A$ и любого $\varepsilon>0$ существует клеточное множество $A_\varepsilon,$ такое что $A_\varepsilon\subset\overline{A_\varepsilon}\subset A^0\subset A,$ где $\overline{A_\varepsilon}$ — замыкание множества $A_\varepsilon$, $A^0\;$ — внутренность множества $A_\varepsilon$.

Доказательство показать

Подготовив все необходимые понятия, перейдем к основной части нашей работы.

Мера Жордана

Множество $\Omega \subset \mathbb{R}^n$ называется измеримым по Жордану, если для любого $\varepsilon>0$ найдутся два клеточных множества $A, B$, такие что $A \subset \Omega \subset B$ и $m\left(B\right)-m\left(A\right)<\varepsilon$.

method-draw-image
Рис. 1. Иллюстрация к определению множества, измеримого по Жордану.

Мы видим, что $$\sup\limits_{A\subset \Omega} m\left(A\right)\leq\inf\limits_{B\supset \Omega} m\left(B\right).$$
Числа $\sup\limits_{A\subset \Omega} m\left(A\right)$ и $\inf\limits_{B\supset \Omega} m\left(B\right)$ называются соответственно нижней и верхней мерой Жордана. Если эти меры равны, то множество $m\left(\Omega\right)$ — измеримо, а его мерой будет число $m\left(\Omega\right)=\sup\limits_{A\subset \Omega} m\left(A\right)=\inf\limits_{B\supset \Omega} m\left(B\right)$.
Докажем корректность определения.

Лемма 2. В определении меры измеримого по Жордану множества $\Omega$ число $m\left(\Omega\right)$ существует и единственно, причем
$$
m\left(A\right)\leq m\left(\Omega\right)\leq m\left(B\right)
$$

Доказательство показать

Рассмотрим еще один важный случай.

Множества жордановой меры нуль

Чтобы определить понятие множества меры нуль, докажем небольшую лемму.

Лемма 3. Если $E\subset\mathbb{R}^n$ и для любого $\varepsilon>0$ найдется клеточное множество $B=B_\varepsilon$ такое что $E\subset B$ и $mB<\varepsilon$, то $mE=0$

Доказательство показать

Определенное таким образом множество будем называть множеством меры нуль. Такие множества обладают некоторыми важными свойствами, которые мы сейчас и рассмотрим.

Свойство 1. Объединение конечного числа множеств меры нуль есть множество меры нуль.

Доказательство показать

Свойство 2. Подмножество множества меры нуль есть множество меры нуль.

Доказательство показать

Логично, что должны быть определенные необходимые и достаточные условия измеримости множества по Жордану. Прежде чем перейти к ним, докажем вспомогательную лемму.

Лемма 4 Если связное множество $A\subset\mathbb{R}^n$ не имеет общих точек с границей множества $B\subset\mathbb{R}^n$, то $A$ лежит либо внутри $B$, либо внутри его дополнения.

Доказательство показать

И, наконец, докажем критерий.

Теорема(критерий измеримости множества в $\mathbb{R}^n$). Множество $\Omega\subset\mathbb{R}^n$ будет измеримым по Жордану тогда и только тогда, когда оно ограниченно, а его граница $\partial\Omega$ имеет жорданову меру нуль.

Доказательство показать

Свойства множеств, измеримых по Жордану

Свойство 1. Если множества $\Omega_1$ и $\Omega_2$ измеримы по Жордану, то множества $\Omega_1\cap\Omega_2$, $\Omega_1\setminus \Omega_2$, и $\Omega_1\cup\Omega_2$ также измеримы по Жордану.

Доказательство показать

Свойство 2. Если множества $\Omega_i,\;i=\overline{1,n}$ измеримы по Жордану, то и множествo $\bigcup\limits_{i=1}\limits^n\Omega_i$ измеримо по Жордану, и
$$
m\left(\bigcup\limits_{i=1}\limits^n\Omega_i\right)\leq\sum\limits_{i=1}^nm\left(\Omega_i\right).
$$
Если множества $\Omega_i,i=\overline{1,n}$ попарно не пересекаются, то
$$
m\left(\bigcup\limits_{i=1}\limits^n\Omega_i\right)=\sum\limits_{i=1}^nm\left(\Omega_i\right).
$$

Доказательство показать

Пример

показать

Использованная литература:

Дополнительная литература:

Тест "Мера Жордана"

Пройдите небольшой тест, чтобы закрепить ваши знания.

Таблица лучших: Тест "Мера Жордана"

максимум из 9 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Аддитивная группа направленных отрезков

Теорема:

Множество направленных отрезков произвольной прямой, произвольной плоскости или пространства относительно операции сложения образуют абелеву группу.

Доказательство показать

Литература :

Предел функции по множеству


Возьмём произвольные множества $X$, $Y$. Отображением $F$ из $X$ в $Y$ называется соответствие, которое каждому $x\in X$ сопоставляет единственный элемент $y \in Y$.

  • Множество $X$ — область определения.
  • Множество всех $y\in Y$ — область значения. Надо рассмотреть функции $f$, определённые на некоторых множествах $E \subset \mathbb{R}^{n}$ со значениями в ${R}^{m}$. Такие функции называются векторными функциями многих переменных. Значениями функции $f$ являются $m$-мерные векторы. Функции такого вида также будем называть отображениями.
    Функция значения которой являются действительные числа наз. действительной.Функция $f$: $E \mapsto \mathbb{R} , E \subset \mathbb{R}^{n}$.Пусть $f$: $E \mapsto \mathbb{R}^{m} , m \geq 2 $ где, $E \subset \mathbb{R}^{n}$. Тогда для любого фиксированного $x\in E$ с значением $f(x)$ есть $m$ — мерный вектор, который мы можем записать в таком виде:$f(x) = (f^{1}(x),…,f^{m}(x)),$ где
    $f^{i}(x)$ — действительный числа(координаты вектора $f(x)$.

    Поэтому следует, что мы получаем $m$ действительных функций на множестве $E: f^{i}: E \mapsto \mathbb{R}$.
    $f = (f^{1},…,f^{m}),$
    $f^{i}$ — называют компонентами векторной функции $f$.

    Предел функции

    Дано множество $E \subset \mathbb{R}^{n}$, $a$ — предельная точка множества $E$ и функция $f$: $E \mapsto \mathbb{R}^{m}$.
    Точка $b\in \mathbb{R}^{m} $ называется пределом функции $f$ в точке по множеству $E$, если для любого $\varepsilon > 0$ найдётся такое $\delta > 0$, что для всех $x \in E$, отличных от точки $a$ и удовлетворяющих условию $0 < \left | x-a \right | < \delta$ , справедливо неравенство $\left | f(x)- b \right | < \varepsilon$. В этом случае пишут

    $b = \lim\limits_{x \to a, x \in E } {f(x)}$

    и говорят, что $f(x)$ стремится к $b$, проходя множество $E$.

    Теорема

    Допустим функция $f$: $E \mapsto \mathbb{R}^{m}$ где, $E \subset \mathbb{R}^{n}$ и $a$ — предельная точка множества $E$. Чтобы точка $b\in\mathbb{R}^{m}$ являлась пределом функции $f$ в точке $a$ по множеству $E$ , необходимо и достаточно, чтобы для любой сходящейся к $a$ последовательности $\left \{ x_{\kappa } \right \}$ точек из $E$, отличных от $a$, было выполнено равенство $\lim\limits_{\kappa \to \infty} f(x_\kappa ) = b$.

    Необходимость:

    Пусть $\lim\limits_{x \to a, x \in E} f(x) = b$ и пусть $x_\kappa \in E,x_\kappa \neq a, \lim\limits_{\kappa \to \infty} x_\kappa = a $, то есть фиксируем некоторую последовательность $0 $<$ \left | x — a \right | $<$ \delta $ . Докажем, что $\lim\limits_{\kappa \to \infty} f(x_\kappa) = b$. Зададим $\varepsilon > 0$. Тогда, по определению предела функции , найдётся такое $\delta > 0$, что для всех $x \in E $, удовлетворяющих условию $ 0 $<$ \left | x — a \right | < \delta $ справедливо неравенство $\left | f(x) — b\right | < \varepsilon $, так как $ x_{\kappa }\rightarrow a$ и $ x_{\kappa } \neq a $, то найдётся такой номер $N$, что при любом $\kappa \geq N$ будет $0<\left | x_{\kappa}-a \right |<\delta$.
    Поэтому для $ \kappa \geq N$ выполнено неравенство $ \left | f(x_{\kappa}) — b\right | < \varepsilon $. Это означает,что $\lim\limits_{\kappa \to \infty} f(x_\kappa) = b.$

    Достаточность:

    Сделаем предположение,что предел функции $f$ в точке $a$ либо не существует,либо существует,но не равен $b$. Тогда найдется такое $ \varepsilon_{0} > 0 $ , что для любого $ \delta > 0 $ найдется точка $ x’ \in E$ для котoрой, $\left | x’-a \right | < \delta $, но $\left | f(x’) — b\right | \geq \varepsilon$. Пологая $\delta =\frac{1}{\kappa}$, построим последовательность точек$x’_{\kappa}$, для которых $ 0 $<$ \left | x’_{\kappa } — a \right | $<$ \frac{1}{\kappa } $, но $\left |f(x’_{\kappa }) — b \right | \geq \varepsilon _{0} $, тогда получим, что $x’_{\kappa} \rightarrow a $, нo $f\left ( x’_{\kappa } \right )$ не стремится к $b$, а это противоречит нашему условию.

    Определим функцию по Гейне:

    Точка $b$ называется пределом функции $f$ в точке $a$, если для любой последовательности $\left \{ x_{\kappa } \right \}$ точек из $E$ ,сходящейся к $a$,  $x_{\kappa } \neq a$, соответствующая последовательность $\left \{ f(x_{\kappa }) \right \} $ значений функции сходится к точке $b$.

    Для доказательства следующей теоремы, достаточно воспользоваться определением предела по Гейне.

    Теорема(арифметические свойства): пусть функции $f,g$: $ E\rightarrow \mathbb{R}^{m}, E\subset \mathbb{R}^{n}$, $a$- прeдельная точка множества $E$ и

    $\lim\limits_{x\to a, x \in E}f(x) = b$, $\lim\limits_{x\to a, x \in E}g(x) = c$

    Тогда
    1)$\lim\limits_{x\to a, x \in E}(f+g)(x) = b+c$;

    2)$\lim\limits_{x\to a, x \in E}(f \cdot g)(x) = b \cdot c$;

    3)если $f,g$ — действительные функции и $g(x)\neq 0, c\neq 0$ ,то $\lim\limits_{x\to a, x \in E}\frac{f}{g}(x) = \frac{b}{c}.$

    Литература

  • В.И. Коляда и А. А. Кореновский » Курс лекций по математическому анализу.Часть 1.»- О.: «Астропринт» ,2009. — (с.250-252)
  • Конспект лекций Г.М. Вартаняна
  • предел функции на множестве

    Тест на закрепление материала на тему «Граница функции на множестве»

Лемма Больцано-Вейерштрасса

Теорема Больцано — Вейерштрасса, или лемма Больцано — Вейерштрасса о предельной точке — фундаментальная теорема математического анализа, гласящая, что из любой ограниченной последовательности точек пространства \mathbb{R}^n можно выделить сходящуюся подпоследовательность. Т. Б. — В., используется при доказательстве многих теорем анализа, например, теоремы о достижении непрерывной на отрезке функцией своих точных верхней и нижней граней. Теорема названа в честь чешского математика Бернарда Больцано и немецкого математика Карла Вейерштрасса, которые независимо друг от друга вывели ее формулировку и доказательство.

Формулировка. Любое бесконечное ограниченное множество F \subset \mathbb{R}^n имеет по крайней мере одну предельную точку. Доказательство. Пусть множество F является бесконечным и ограниченным множеством. Предположим, что оно не имеет предельных точек. Следовательно, оно является замкнутым. Поскольку F еще и ограничено, то, по теореме Гейне – Бореля, F компактно. Для каждой точки x \in F построим такую окрестность U_x, в которой нет других точек из F, кроме x (если бы для какой-то точки x такой окрестности не было, то эта точка была бы предельной для F). Тогда семейство \left\{U_x \right\}_{x \in F} образует открытое покрытие компактного множества F. Пользуясь компактностью F, выберем из него некое конечное подпокрытие, иными словами. конечный набор шаров, в каждом из которых содержится лишь по одной точке из множества E. Но это противоречит тому, что множество E бесконечно.\square
Замечание. Предельная точка, существование которой утверждается в данной теореме, вообще говоря, не обязана принадлежать множеству E.

Литература:

Критерий компактности в n-мерном пространстве (Теорема Гейне – Бореля)

Теорема Гейне – Бореля. Чтобы множество K \subset \mathbb{R}^n являлось компактным, необходимо и достаточно, чтобы K было ограниченным и замкнутым.

Доказательство. Достаточность. Пусть K замкнуто и ограничено. Тогда найдется сегмент I \subset \mathbb{R}^n, содержащий K. В силу леммы Гейне – Бореля, этот сегмент I компактен. Поэтому, в силу свойств компактных множеств, компактно также его замкнутое подмножество K. Необходимость. Пусть K —  компакт. Докажем, что данное множество ограничено. Обозначим через B_s открытый шар с центром в точке 0 радиуса s. Тогда последовательность шаров\left\{B_s\right\}^{\infty}_{s=1} покрывает все пространство \mathbb{R}^n, а следовательно, и множество K. Так как K компактно, следовательно, оно может быть покрыто конечным набором шаров B_s. Среди всех этих шаров выберем шар с наибольшим радиусом. Пусть это шар B^{\ast}. Тогда ясно, что K \subset B^{\ast}, так что K ограничено. Покажем теперь, замкнутость множества K. Для этого достаточно показать, что любая точка y \notin K, не будет предельной для K. Итак, пусть y \notin K. Рассмотрим множества G_k = c\overline{B}(y, \frac{1}{k}) (k = 1,2,...). Так как замкнутый шар \overline{B}(y, \frac{1}{k}) – множество замкнутое, следовательно его дополнение G_k открыто. Кроме того, ясно, что \bigcup^{\infty}_{k=1}G_k = \mathbb{R}^n \setminus \left\{y\right\}. Поскольку y \notin K, то совокупность множеств G_k (k = 1,2,...) образует открытое покрытие множества K. Пользуясь компактностью K, выберем из этого покрытия конечное подпокрытие \left\{G_{k_1},...,G_{k_s}\right\} и положим \rho = \frac{1}{max\left\{k_1,...,k_s\right\}} > 0. Отсюда следует, что шар B(y,\rho) не имеет общих точек с множеством K. Получаем, что точка y не будет предельной для K\square

Литература: