НОД двух многочленов

Для многочленов, также как и для множества целых чисел, можно определить наибольший общий делитель (НОД) и наименьшее общее кратное.

При определении понятия НОД, для начала необходимо ознакомиться с понятием общего делителя двух многочленов. Заранее для краткости и удобства договоримся, что в дальнейшем под понятиями общего делителя и наибольшего общего делителя мы будем подразумевать их аналоги на множестве $P\left[x\right].$

Определение 1 (общий делитель)

Пусть даны $f\left(x\right), g\left(x\right) \in P\left[x\right],$ причем $f\left(x\right), g\left(x\right) \neq 0.$ Тогда общим делителем этих многочленов будет являться многочлен $d\left(x\right) \in P\left[x\right]$ при условии, что $f\left(x\right) \vdots d\left(x\right)$ и $g\left(x\right) \vdots d\left(x\right).$

Замечание. Любая ненулевая константа является общим делителем для любых двух многочленов.

Пример 1. Пусть $f\left(x\right) = x^8-1,$ $g\left(x\right) = x^4-1.$ Для того, чтобы найти общие делители разложим эти многочлены по формуле разности квадратов: $$f\left(x\right) = x^8-1 = \left(x^4-1\right)\left(x^4 + 1\right) = \left(x^2-1\right)\left(x^2 + 1\right)\left(x^4 + 1\right) =\\= \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right)\left(x^4 + 1\right),$$ $$g\left(x\right) = x^4-1 = \left(x^2-1\right)\left(x^2 + 1\right) = \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right).$$Как мы видим, общими делителями являются $\left(x-1\right),$ $\left(x + 1\right)$ и $\left(x^2 + 1\right).$

Было бы некорректно применять такое определение НОД, по которому наибольшим общим делителем двух многочленов является их общий делитель наибольшей степени, т.к. оно является слишком обобщенным. Поэтому мы введём такое понятие:

Определение 2 (наибольший общий делитель)

Пусть даны $f\left(x\right), g\left(x\right) \in P\left[x\right],$ причем $f\left(x\right), g\left(x\right) \neq 0.$ Тогда многочлен $d\left(x\right) \in P\left[x\right]$ будет являться их наибольшим общим делителем, если сам будет являться их общим делителем, который делится на любые другие общие делители $f\left(x\right)$ и $g\left(x\right).$ Обозначение: $d\left(x\right) = \left(f\left(x\right), g\left(x\right)\right)$ — НОД для $f\left(x\right), g\left(x\right) \in P\left[x\right].$

Замечание. Пусть $f\left(x\right) = 0$ и $g\left(x\right) = 0.$ Тогда НОД$\left(f\left(x\right), g\left(x\right)\right) = 0.$

Лемма. НОД определен (если существует) с точностью до постоянного ненулевого множителя.

Пусть даны $f\left(x\right), g\left(x\right) \in P\left[x\right],$ для которых $d_1\left(x\right), d_2\left(x\right) \in P\left[x\right]$ — два НОД.

Тогда, по определению, $d_1\left(x\right) \vdots d_2\left(x\right)$ и $d_2\left(x\right) \vdots d_1\left(x\right).$ По свойству делимости $\left(f\left(x\right) \vdots g\left(x\right) \wedge g\left(x\right) \vdots f\left(x\right) \Leftrightarrow \exists c \in P^*: f\left(x\right) = c \cdot g\left(x\right)\right)$ $d_1\left(x\right) = c_1 \cdot d_2\left(x\right),$ $c_1 \in P^*,$ $c_1 = \text{const}.$

Пусть $\exists c_2 \in P^*,$ $c_2 = \text{const}.$ Тогда, если $d_2\left(x\right)$ — общий делитель для $f\left(x\right)$ и $g\left(x\right)$ (по определению), то и $c_2 \cdot d_2\left(x\right)$ — тоже общий делитель. Соответственно, если $d_2\left(x\right)$ — НОД, т.е. делится на любой другой общий делитель (по определению), то и $c_2 \cdot d_2\left(x\right)$ — тоже является НОД.

Пример 2. Возьмём те же $f\left(x\right)$ и $g\left(x\right),$ что и в примере 1: $f\left(x\right) = x^8-1,$ $g\left(x\right) = x^4-1.$ Чтобы найти НОД этих многочленов, разложим их так же, как и в предыдущем примере: $$f\left(x\right) = x^8-1 = \left(x^4-1\right)\left(x^4 + 1\right) = \left(x^2-1\right)\left(x^2 + 1\right)\left(x^4 + 1\right) =\\= \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right)\left(x^4 + 1\right),$$ $$g\left(x\right) = x^4-1 = \left(x^2-1\right)\left(x^2 + 1\right) = \left(x-1\right)\left(x + 1\right)\left(x^2 + 1\right).$$Очевидно, что наибольшим общим делителем будет являться $\left(x^4-1\right).$

Теперь разберем способ получения НОД двух многочленов. Находить его можно таким же способом, что и для двух целых чисел, — алгоритмом Евклида (или алгоритмом последовательного деления).

Замечание. С помощью этого алгоритма доказывается существование НОД двух многочленов.

Пример 3. Построим НОД для двух многочленов с помощью алгоритма Евклида. Пусть даны $f\left(x\right) = x^4+x^3-3x^2-4x-1$ и $g\left(x\right) = x^4+x^3-x-1.$

$x^4$ $+$ $x^3$ $-$ $3x^2$ $-$ $4x$ $-$ $1$  
$x^4$ $+$ $x^3$     $-$ $x$ $-$ $1$  
      $-$ $3x^2$ $-$ $3x$      
$x^4$ $+$ $x^3$ $-$ $x$ $-$ $1$
$1$            
  $x^4$ $+$ $x^3$ $-$ $x$ $-$ $1$  
  $x^4$ $+$ $x^3$          
        $-$ $x$ $-$ $1$  
$-$ $3x^2$ $-$ $3x$      
$-$ $\frac{1}{3}x^2$          
        $-$ $3x^2$ $-$ $3x$  
        $-$ $3x^2$ $-$ $3x$  
              $0$  
$-$ $x$ $-$ $1$      
$3x$            

Последний ненулевой остаток и будет являться НОД этих многочленов, т.е. НОД$\left(f\left(x\right), g\left(x\right)\right) = -x-1.$

Может возникнуть случай, когда НОД двух многочленов будет равен $1.$ При этом говорят, что многочлены являются взаимно простыми.

Пример 4. Пусть даны $f\left(x\right) = -x^3+x-1$ и $g\left(x\right) = x-2.$ Найдем их НОД. Для удобства умножим $f\left(x\right)$ на $-1,$ получим $f\left(x\right) = x^3-x+1.$

$x^3$ $+$ $0x^2$ $-$ $x$ $+$ $1$  
$x^3$ $+$ $2x^2$          
    $2x^2$ $-$ $x$ $+$ $1$  
    $2x^2$ $-$ $4x$      
        $3x$ $+$ $1$  
        $3x$ $-$ $6$  
            $7$  
$x$ $-$ $2$        
$x^2$ $+$ $2x$ $+$ $3$    

Таким образом, многочлен $q\left(x\right) = x^2+2x+3$ — частное деления многочленов, а $r\left(x\right) = 7$ — остаток. Дальнейшее деление можно не продолжать, т.к. и так понятно, что в следующем остатке мы получим $0,$ т.е. $7$ будет последним ненулевым остатком, после умножения которого на $\displaystyle\frac{1}{7},$ НОД$\left(f\left(x\right), g\left(x\right)\right) = 1.$ Следовательно, $f\left(x\right)$ и $g\left(x\right)$ — взаимно простые.

Также стоит упомянуть и линейное представление НОД:$$d\left(x\right) = f\left(x\right) \cdot u\left(x\right) + g\left(x\right) \cdot v\left(x\right),$$ где $f\left(x\right), g\left(x\right), u\left(x\right), v\left(x\right) \in P\left[x\right],$ а $d\left(x\right) = \left(f\left(x\right), g\left(x\right)\right).$

Примеры решения задач

  1. Определить наибольший общий делитель многочленов:
    1. $f\left(x\right) = x^2-9$ и $g\left(x\right) =x^3-27;$
    2. $f\left(x\right) = x^5+x^3+x$ и $g\left(x\right) = x^4+x^3+x;$
    Решение (пример a.)

    Для построения НОД воспользуемся алгоритмом Евклида. Так как степень многочлена $g\left(x\right)$ больше степени многочлена $f\left(x\right),$ то мы будем делить $g\left(x\right)$ на $f\left(x\right).$

      $x^3$ $+$ $0x^2$ $+$ $0x$ $-$ $27$  
      $x^3$     $-$ $9x$      
              $9x$ $-$ $27$  
    $x^2$ $-$ $9$        
    $x$            

    После первого деления мы получили остаток $r_1\left(x\right) = 9x-27.$ Для удобства мы можем умножить его на $\displaystyle\frac{1}{9}.$ Получим $r_1\left(x\right) = x-3.$

    Продолжаем наше деление, только в этот раз мы делим многочлен $g\left(x\right)$ на остаток $r_1\left(x\right).$

          $x^2$ $+$ $0x$ $-$ $9$  
          $x^2$ $-$ $3x$      
              $3x$ $-$ $9$  
              $3x$ $-$ $9$  
                  $0$  
    $x$ $-$ $3$        
    $x$ $+$ $3$        

    Теперь в остатке мы получили $0$ — значит деление закончено. Последний ненулевой остаток и будет являться НОД многочленов $f\left(x\right)$ и $g\left(x\right).$ В нашем случае это $x+3.$

    Ответ: НОД$\left(f\left(x\right), g\left(x\right)\right) = x+3.$

    [свернуть]

    Решение (пример b.)

    Также как и в прошлом примере, воспользуемся алгоритмом последовательного деления.

    $x^5$ $+$ $0x^4$ $+$ $x^3$ $+$ $0x^2$ $+$ $x$  
    $x^5$ $+$ $x^4$     $+$ $x^2$      
      $-$ $x^4$ $+$ $x^3$ $-$ $x^2$ $+$ $x$  
      $-$ $x^4$ $-$ $x^3$     $-$ $x$  
            $2x^3$ $-$ $x^2$ $+$ $2x$  
    $x^4$ $+$ $x^3$ $+$ $x$    
    $x$ $-$ $1$        

    В результате первого деления мы получили остаток $r_1\left(x\right) = x-1.$ Продолжаем деление.

      $x^4$ $+$ $x^3$ $+$ $0x^2$ $+$ $x$  
      $x^4$ $-$ $\frac{1}{2}x^3$ $+$ $x^2$      
          $\frac{3}{2}x^3$ $-$ $x^2$ $+$ $x$  
          $\frac{3}{2}x^3$ $-$ $\frac{3}{4}x^2$ $+$ $\frac{3}{2}x$  
            $-$ $\frac{1}{4}x^2$ $-$ $\frac{1}{2}x$  
    $2x^3$ $-$ $x^2$ $+$ $2x$    
    $\frac{1}{2}x$ $+$ $\frac{3}{4}$        

    Для удобства умножим остаток $r_2\left(x\right) = -\frac{1}{4}x^2-\frac{1}{2}x$ на $-4$ и получим $r_2\left(x\right) = x^2+2x.$ Продолжаем деление.

          $2x^3$ $-$ $x^2$ $+$ $2x$  
          $2x^3$ $+$ $4x^2$      
            $-$ $5x^2$ $+$ $2x$  
            $-$ $5x^2$ $-$ $10x$  
                  $12x$  
    $x^2$ $+$ $2x$        
    $2x$ $-$ $5$        

    Третий остаток умножим на $\displaystyle\frac{1}{12}$ и получим $r_3\left(x\right) = x.$ Поделим в последний раз.

              $x^2$ $+$ $2x$  
              $x^2$      
                  $2x$  
                  $2x$  
                  $0$  
    $x$            
    $x$ $+$ $2$        

    Как мы видим, последний ненулевой остаток равен $x$ — это и будет нашим НОД.

    Ответ: НОД$\left(f\left(x\right), g\left(x\right)\right) = x.$

    [свернуть]
  2. Пользуясь алгоритмом Евклида, убедиться в том, что многочлены $f\left(x\right)$ и $g\left(x\right)$ взаимно простые, и подобрать $u\left(x\right)$ и $v\left(x\right)$ так, чтобы $f\left(x\right) \cdot u\left(x\right) + g\left(x\right) \cdot v\left(x\right) = 1:$ $$f\left(x\right) = 3x^3-2x^2+x+2,\\ g\left(x\right) =x^2-x+1.$$
    Решение

    Как и сказано в условии задачи, воспользуемся алгоритмом Евклида, чтобы проверить равен ли НОД наших многочленов $1.$ В отличии от прошлого задания, здесь надо запоминать все частные и остатки.

      $3x^3$ $-$ $2x^2$ $+$ $x$ $+$ $2$  
      $3x^3$ $-$ $3x^2$ $+$ $3x$      
          $x^2$ $-$ $2x$ $+$ $2$  
          $x^2$ $-$ $x$ $+$ $1$  
            $-$ $x$ $+$ $1$  
    $x^2$ $-$ $x$ $+$ $1$    
    $3x$ $+$ $1$   $=$ $q_1\left(x\right)$  

    Получили остаток $r_1\left(x\right) = -x+1.$ Продолжаем деление.

          $x^2$ $-$ $x$ $+$ $1$  
          $x^2$ $-$ $x$      
                  $1$  
    $-$ $x$ $+$ $1$      
    $-$ $x$     $=$ $q_2\left(x\right)$  

    $r_2\left(x\right) = 1,$ следовательно НОД$\left(f\left(x\right), g\left(x\right)\right) = 1,$ значит, наши многочлены взаимно простые и можно продолжать решать. Запишем многочлены в таком виде:$$\begin{cases} f\left(x\right) = g\left(x\right) \cdot q_1\left(x\right) + r_1\left(x\right); \\ g\left(x\right) = r_1\left(x\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Выразим $r_1\left(x\right)$ из первого равенства и подставим во второе:$$\begin{cases} r_1\left(x\right) = f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right); \\ g\left(x\right) = \left(f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right)\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Помня про то, что $r_2\left(x\right) = d\left(x\right),$ продолжаем наши преобразования:$$f\left(x\right) \cdot \left(-q_2\left(x\right)\right) + g\left(x\right) \cdot \left(1 + q_1\left(x\right) \cdot q_2\left(x\right)\right) = d\left(x\right).$$ Подставляем значения:$$f\left(x\right) \cdot \left(x\right) + g\left(x\right) \cdot \left(-3x^2-x+1\right) = d\left(x\right).$$

    Если сравнить данное равенство с формулой линейного представления НОД, мы увидим, что получили $u\left(x\right) = x$ и $v\left(x\right) = -3x^2-x+1.$

    Ответ: $u\left(x\right) = x,$ $v\left(x\right) = -3x^2-x+1.$

    [свернуть]
  3. Пользуясь алгоритмом Евклида, найти многочлены $u\left(x\right)$ и $v\left(x\right)$ такие, чтобы они удовлетворяли равенству $f\left(x\right) \cdot u\left(x\right) + g\left(x\right) \cdot v\left(x\right) = d\left(x\right),$ где $d\left(x\right)$ — НОД многочленов $f\left(x\right)$ и $g\left(x\right):$ $$f\left(x\right) = x^4+2x^3-x^2-4x-2,\\ g\left(x\right) = x^4+x^3-x^2-2x-2.$$

    Решение

    Для начала необходимо построить НОД. Для этого используем алгоритм Евклида.

    $x^4$ $+$ $2x^3$ $-$ $x^2$ $-$ $4x$ $-$ $2$  
    $x^4$ $+$ $x^3$ $-$ $x^2$ $-$ $2x$ $-$ $2$  
        $x^3$     $-$ $2x$      
    $x^4$ $+$ $x^3$ $-$ $x^2$ $-$ $2x$ $-$ $2$
    $1$       $=$ $q_1\left(x\right)$      

    Получили остаток $r_1\left(x\right) = x^3-2x.$ Делим дальше.

    $x^4$ $+$ $x^3$ $-$ $x^2$ $-$ $2x$ $-$ $2$  
    $x^4$     $-$ $2x^2$          
        $x^3$ $+$ $x^2$ $-$ $2x$ $-$ $2$  
        $x^3$     $-$ $2x$      
            $x^2$     $-$ $2$  
    $x^3$ $-$ $2x$          
    $x$ $+$ $1$     $=$ $q_2\left(x\right)$  

    Второй остаток $r_2\left(x\right) = x^2-2.$ Выполняем последнее деление.

              $x^3$ $-$ $2x$  
              $x^3$ $-$ $2x$  
                  $0$  
    $x^2$ $-$ $2$        
    $x$       $=$ $q_3\left(x\right)$  

    $r_3\left(x\right) = 0,$ следовательно НОД$\left(f\left(x\right), g\left(x\right)\right) = x^2-2.$ Дальнейшие наши действия ведутся по тому же принципу, что и в прошлой задаче, поэтому запишем многочлены в таком виде:$$\begin{cases} f\left(x\right) = g\left(x\right) \cdot q_1\left(x\right) + r_1\left(x\right); \\ g\left(x\right) = r_1\left(x\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Выразим $r_1\left(x\right)$ и подставим его во второе равенство:$$\begin{cases} r_1\left(x\right) = f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right); \\ g\left(x\right) = \left(f\left(x\right)-g\left(x\right) \cdot q_1\left(x\right)\right) \cdot q_2\left(x\right) + r_2\left(x\right). \end{cases}$$ Помним, что $r_2\left(x\right) = d\left(x\right),$ поэтому делаем замену:$$f\left(x\right) \cdot \left(-q_2\left(x\right)\right) + g\left(x\right) \cdot \left(1 + q_1\left(x\right) \cdot q_2\left(x\right)\right) = d\left(x\right).$$ Подставляем значения:$$f\left(x\right) \cdot \left(-x-1\right) + g\left(x\right) \cdot \left(x+2\right) = d\left(x\right).$$

    Итак, мы получили $u\left(x\right) = -x-1$ и $v\left(x\right) = x+2.$ На этом можно и закончить, но иногда стоит перепроверить правильность своих вычислений. Для проверки нам необходимо вместо $f\left(x\right)$ и $g\left(x\right)$подставить их значения, а после раскрыть скобки. Если в итоге мы получим многочлен равный построенному НОД, то $u\left(x\right)$ и $v\left(x\right)$ подобраны верно. В нашем случае все сходится, а значит мы можем записывать их в ответ.

    Ответ: $u\left(x\right) = -x-1,$ $v\left(x\right) = x+2.$

    [свернуть]

Тест на проверку знаний по теме «НОД двух многочленов»

  1. Фадеев Д. К. Лекции по алгебре: Учебное пособие для вузов. — М., Наука. Главная редакция физико-математической литературы, 1984. — 416 с., стр. 168-170
  2. Курош А. Г. Курс высшей алгебры — И., Наука. Главная редакция физико-математической литературы, 1968. — 431 с., стр. 137-141
  3. Личный конспект, составленный на основе лекций Белозерова Г.С.

М1812. Доказать тождество

Задача из журнала «Квант» (2002 год, 2 выпуск)

Условие

Натуральные числа $а,$ $b$ и $с$ таковы, что $НОД\left(a^2-1,b^2-1,c^2-1\right) = 1.$

Докажите, что $НОД\left(ab+c, bc+a, ca+b\right) = НОД\left(a,b,c\right)$ (НОД – наибольший общий делитель).

Рассмотрим произвольное простое число $р$ и докажем, что оно входит в $НОД\left(a^2-1, b^2-1, c^2-1\right)$ и $НОД\left(a,b,c\right)$ в равной степени. Заметим, что если $НОД\left(a, b, c\right)\,\vdots\, p,$ то степень вхождения $р$ в оба НОДа равна наименьшей степени вхождения $р$ в числа $a, b, c$ (если $НОД\left(a, b, c\right)\,\vdots\, p^{k},$ но $c$ не делится на $p^{k+1},$ то $ab+c$ делится на $p^{k},$ но не делится на $p^{k+1}).$ Поэтому достаточно доказать, что любой простой делитель $q$ числа $НОД\left(ab+c, bc+a,ca+b\right)$ делит $НОД\left(a, b, c\right).$ Пусть, скажем, $а$ не делится на $q,$ тогда, поскольку $bc + a$ не делится на $q,$ получаем, что $b$ не делится на $q$ и $с$ не делится на $q.$ Тогда $$(ab + c)(bc + a) — a(ab + c) — c(bc + a) = ac(b^2-1)\,\vdots\, q.$$ Стало быть, $(b^2-1)\,\vdots\, q.$ Аналогично, $(a^2-1)\,\vdots\, q$ и $(c^2-1)\,\vdots\, q$ – это уже противоречие с тем, что $НОД\left(a^2-1, b^2-1, c^2-1\right) = 1.$ Значит, $НОД\left(ab+c, bc+a, ca+b\right) = НОД\left(a, b, c\right).$

А.Голованов

М1814. О периодической последовательности

Задача из журнала «Квант»(2002 год, 2 выпуск)

Условие

Пусть $a$, $m_1$, $m_2$ $-$ натуральные числа, причем $a$ взаимно просто как с $m_1$, так и с $m_2$. Обозначим через $r_n$ остаток от деления целой части числа $\frac{a^n}{m_1}$ на $m_2$ $(n = 0, 1, 2, \ldots)$.

Докажите, что последовательность $\{r_n\}$ является периодической.

Доказательство

Так как НОД$(a$, $m_1)$ $=$ НОД$(a$, $m_2) = 1$, то НОД$(a$, $m_1m_2) = 1$. Пусть $n_0 -$ какое-нибудь натуральное число, для которого $a^{n_0}$ при делении на $m_1m_2$ дает в остатке $1$. (Если НОД$(a$, $m_1m_2) = 1$, то такое число обязательно существует. Можно, например, положить $n_0 = \varphi(m_1m_2)$, где $ \varphi(m) — $ функция Эйлера $-$ см. статью В.Сендерова и А.Спивака «Малая теорема Ферма» в «Кванте» №1 за 2000 год.)

Тогда $a^{n_0} = Qm_1m_2 + 1$ для некоторого целого числа $Q$. Теперь при любом $n \geqslant n_0$ имеем $$\left[\frac{a^n}{m_1}\right] = \left[\frac{a^{n_0}a^{n-n_0}}{m_1}\right] = \left[\frac{(Qm_1m_2 + 1)a^{n-n_0}}{m_1}\right] =$$ $$= \left[a^{n-n_0}Qm_2 + \frac{a^{n-n_0}}{m_1}\right] = a^{n-n_0}Qm_2 + \left[\frac{a^{n-n_0}}{m_1}\right]$$ ($\left[x\right]$ обозначает целую часть числа $x$).

Таким образом, остатки чисел $\left[\frac{a^n}{m_1}\right]$ и $\left[\frac{a^{n-n_0}}{m_1}\right]$ при делении на $m_2$ совпадают, т.е. $r_n = r_{n-n_0}$. Значит, последовательность $\{r_n\}$ имеет период длины $n_0$ (доказано также и то, что этот период начинается с самого начала последовательности).

Возникает вопрос о длине наименьшего периода последовательности $\{r_n\}$. Верно ли, что если в качестве $n_0$ взять наименьшее натуральное число такое, что $a^{n_0}$ при делении на $m_1m_2$ дает в остатке $1$, то $n_0$ и будет длиной наименьшего периода? Как показывает пример $a = 3$, $m_1 = 13$, $m_2 = 2$ (здесь $n_0 = 3$, а последовательность $\{r_n\}$ сплошь состоит из нулей), ответ на этот вопрос в общем случае отрицателен. Однако если дополнительно предположить, например, что $m_2 \geqslant m_1$, то ответ будет утвердительным (читателю предлагается доказать это в качестве упражнения).

Н.Осипов

М1762. Две тысячи делителей

Задача из журнала «Квант» (2001 год, 4 выпуск)

Условие

Существует ли натуральное число $n$ такое, что $n$ имеет ровно $2000$ различных простых делителей и $2^n+1$ делится на $n$?

Решение

Докажем по индукции, что для любого натурального $k$ существует натуральное $n_k$, имеющее $k$ различных простых делителей, делящееся на $3$ и такое, что $2^{n_k}+1$ делится на $n_k$.

Для $k=1$ можно взять $n=3$. Пусть число $n_k=n$, кратное $3$, имеет $k$ различных простых делителей, причём $2^n+1$ делится на $n$.

Число $2^{3n}+1=\left(2^n+1\right)\left(2^{2n}-2n+1\right)$ делится на $3n$. Это следует из того, что $2^n+1$ делится на $n$, а
$$2^{2n}-2^n+1=\left(2^n-2\right)\left(2^n+1\right)+3\;\;\;(*)$$ делится на $3$ (поскольку при нечётном $n$ числа $2^n+1$ и $2^n-2$ делятся на $3$).

Далее, число $2^{2n}-2^n+1$ не делится на $9$, поскольку на $9$ делится произведение $\left(2^n-2\right)\left(2^n+1\right)$. Значит, поскольку $2^{2n}-2^n+1>3$ при $n>1$, то это число имеет при $n>1$ простой делитель $p>3$. Так как НОД $\left(2^n+1, 2^{2n}-2^n+1\right)=3$ (это тоже ясно из равенства $(*)$), то $p$ — не делитель $n$.

Из сказанного следует, что число $3pn$ имеет $k+1$ простой делитель, причём $2^{3pn}+1$ делится на $3pn$. Последнее следует, например из равенства
$$\left(2^{3n}\right)^p+1=\left(2^{3n}+1\right)\left(\left(2^{3n}\right)^{p-1}-\left(2^{3n}\right)^{p-2}+\cdots+1\right)$$

Для завершения решения достаточно положить $n_{k+1}=3pn=3pn_k$.

А.Егоров, В.Сендеров

М1476

Условие

Докажите, что не существует различных простых чисел p, q таких, что [latex]2^{p}+1[/latex] делится на [latex]q[/latex], [latex]2^{q}+1[/latex] делится на [latex]p[/latex].

Доказательство

Ясно, что [latex]p[/latex] и [latex]q[/latex] нечетны, и если одно из них равно 3, то другое тоже должно равняться 3. Поэтому будем в дальнейшем считать, что [latex]p>q>3[/latex].

Первое решение.

Из условия следует, что [latex]2^{2p}\equiv1(\bmod m)[/latex].
С другой стороны, согласно малой теореме Ферма, для простого [latex]q[/latex] имеем: [latex]2^{q-1}\equiv1(\bmod q)[/latex].
Пусть n — найменьшее натуральное число такое, что [latex]2^n=1(mod q)[/latex]. Тогда [latex]n\neq 2[/latex] — отличный от единицы делитель числа [latex]2p[/latex]. Значит, [latex]n=p[/latex] либо [latex]n=2p[/latex], т.е. n не является делителем числа [latex]q-1[/latex]. Противоречие.
Второе решение можно получить, опираясь на следующее утверждение.

Лемма 1

Пусть [latex]p[/latex], [latex]q[/latex] — простые числа, [latex]q\neq 3[/latex],[latex]2^{p}+1[/latex] делится на [latex]q[/latex]. Тогда [latex]q=2kp+1[/latex], где [latex]k[/latex] — натуральное число. Эту лемму легко доказать, заметив, что число n в первом решении равно [latex]2p[/latex]. Из нее следует, что [latex]q>p[/latex]. Противоречие.
Еще одно решение можно получить, опираясь на такое утверждение.

Лемма 2

Если числа a и b взаимно просты, то НОД([latex]2^{a}+1[/latex], [latex]2^{b}+1[/latex])=1,

либо НОД([latex]2^{a}+1[/latex], [latex]2^{b}+1[/latex])=3
(причем второй случай имеет место тогда и только тогда, когда [latex]a[/latex] и [latex]b[/latex] нечетны).

Третье решение

Имеем:[latex]2^{p}+1[/latex] делится на [latex]q[/latex]; [latex]2^{q-1}-1[/latex], по малой теореме Ферма, также делится на [latex]q[/latex]. Следовательно, и [latex]2^{p-q+1}+1[/latex] делится на [latex]q[/latex] — в противоречии с леммой 2.

Замечание.

Лемма 2 является частным случаем следующего несложного утверждения. Пусть НОД([latex]m[/latex],[latex]n[/latex])=1, НОД([latex]a[/latex],[latex]b[/latex])=[latex]d[/latex], НОД([latex]m^{a}+n^{a}[/latex], [latex]m^{b}+n^{b}[/latex])=[latex]d_{1}[/latex]. Тогда [latex]d_{1}=m^{d}+n^{d}[/latex], если числа [latex]\frac{a}{d}[/latex] и [latex]\frac{b}{d}[/latex] оба нечетны; [latex]d_{1}=1[/latex] либо [latex]d_{1}=2[/latex] в противном случае (а именно: [latex]d_{1}=1[/latex], если [latex]m[/latex] и [latex]n[/latex] разной четности; [latex]d_{1}=2[/latex], если [latex]m[/latex] и [latex]n[/latex] нечетны).