М728.Пусть $A$, $B$, $C$ — вершины параллелепипеда, соседние с его вершиной $P$, а $Q$ — вершина, противоположная $P$. Докажите, что:
а) расстояния от точек $A$, $B$, $C$ до прямой $PQ$ могут служить длинами сторон некоторого треугольника;
б) площадь $S$ этого треугольника, объем $V$ параллелепипеда и длина $d$ его диагонали $PQ$ связаны соотношением $V=2dS$.
Решение
Плоскости $PQA, PQB$ и $PQC$ разрезают параллелепипед на 6 долек — тетраэдров. (Один из них — тетраэдр $PQAD$ — выделен на рисунке красным цветом.) Мы доказываем, что объем каждой «дольки» равен $\frac{1}{3}dS$.
Рассмотрим, например, тетраэдр $PQAD$. Его объем не изменится, если сдвинуть вершину $A$ по прямой $AA’$, параллельной диагонали $PQ$. В самом деле, вершины $P, Q$ и $D$ при этом остаются неподвижными, а расстояние от вершины $A$ до плоскости $PQD$ не меняется. Ясно, что и при перемещении точки $D$ вдоль прямой $DD’,$ параллельной $(PQ)$, объем тетраэдра сохранится. Сдвинем теперь вершины $A$ и $D$ в точки $A’$ и $D’$ так, чтобы плоскость $PA’D’$ стала перпендикулярной диагонали $PQ$ (см. рисунок).
а) Поскольку отрезок $A’P$ перпендикулярен к прямой $PQ$, его длина равна расстоянию от точки $A’$ до этой прямой, то есть расстоянию от точки $A$ до $(PQ)$. Точно так же, длина отрезка $D’A’$ равна расстоянию от точки $D$ до прямой $AA’$. При параллельном переносе $\overrightarrow{DB}=\overrightarrow{AP}$ точка $D$ переходит в $B$, а прямая $AA’$ — в $(PQ)$, поэтому $|D’A’|$ — это расстояние от точки $B$ до $(PQ)$. Аналогично доказывается, что $|PD’|$ — это расстояние от точки $C$ до $(PQ)$. Таким образом, длины сторон треугольника $PA’D’$ равны расстояниям от точек $A$, $B$, $C$ до прямой $(PQ)$. По условию его площадь равна $S$.
б) Как мы видели, объем тетраэдра $PQAD$ равен объему тетраэдра $PQA’D’$. Площадь основания $PA’D’$ этого тетраэдра равна $S$, а высота равна длине $d$ ребра $PQ$, так как оно перпендикулярно основанию, Таким образом, $V_{PQAD}=\frac{1}{3}dS$, а объем параллелепипеда $V=6\cdot\frac{1}{3}dS=2dS$.
Внутри остроугольного треугольника $ABC$ выбрана точка $M$, являющаяся:
точкой пересечения медиан;
точкой пересечения биссектрис;
точкой пересечения высот.
Докажите, что если радиусы окружностей, вписанных в треугольники $AMB$, $BMC$, $AMC$ равны, то треугольник $ABC$ — правильный.
Решение
Рис.1
Площади треугольников $AMB$, $BMC$ и $AMC$ (Рис.$1$) одинаковы – они равны $\frac{1}{3}S_{ABC}$(докажите это).
Поскольку площадь $S$ треугольника, его полупериметр $p$ и радиус $r$ вписанной в него окружности связаны соотношением $S = pr$, периметры треугольников $AMB$, $BMC$ и $AMC$ также одинаковы.Предположим теперь, что треугольник $ABC$ – неправильный; пусть, например, $|AB| > |BC|$. Тогда угол $BDA$ – тупой, поэтому $|AM| > |MC|$, так что периметр треугольника $AMB$ больше периметра треугольника $BMC$ – противоречие.
Рис.2
Поскольку $\widehat{CBM} = \widehat{CBM}$ и радиусы окружностей, вписанных в треугольники $AMB$ и $BMC$, равны, эти окружности касаются биссектрисы $BM$ в одной и той же точке (Рис.$2$).
Из этого следует, что все три окружности попарно касаются, и их центры $O_1$, $O_2$ и $O_3$ образуют правильный треугольник, стороны которого перпендикулярны биссектрисам данного треугольника $ABC$. Поэтому, например, $\widehat{BMC} = \frac{\pi + A }{ 2} = \frac{2\pi}{3}$, то есть $\widehat{A} = \frac{\pi}{3}$. Аналогично доказывается, что $B = C = \frac{\pi}{3}$.
Рис.3
Как и в задаче $1$, предположим, что треугольник $ABC$ – неправильный; пусть, например, $|BC| > |AC|$. Обозначим через $D$ и $E$ точки касания окружностей, вписанных в треугольники $AMB$ и $BMC$ соответственно, со сторонами $AC$ и $BC$ (Рис.$3$). Поскольку радиусы этих окружностей равны и $\widehat{CAM} = \widehat{CBM}$, $|AD| = |BE|$. Значит, $|CD| < |CE|$.
С другой стороны, при нашем предположении $\widehat{B } < \widehat{A}$, так что $\widehat{MCA} = \frac{\pi}{2} – \widehat{A} < \frac{\pi}{2} – \widehat{B} = \widehat{BCM}$. Поэтому $|CD| > |CE|$ – противоречие.
Назовем пузатостью прямоугольника отношение его меньшей стороны к большей (пузатость квадрата равна 1). Докажите ,что, как бы не резать квадрат на прямоугольники, сумма их пузатостей будет не меньше 1.
Доказательство
Будем считать что длина стороны квадрата равна 1. Тогда пусть мы разбили квадрат на $ n$ прямоугольников размерами $ a_k\times b_k$ причем при всех $ k$ $ a_k\leq b_k$
Одно из возможных разбиений квадрата на прямоугольники
тогда:
$ {\textstyle1\geq b_k\Rightarrow\frac1{b_k}\geq b_k\Rightarrow\frac{a_k}{b_k}\geq a_k\times b_k\Rightarrow\sum_{k=1}^n}\frac{a_k}{b_k}\geq{\textstyle\sum_{k=1}^n}a_k\times b_k=1$ (сумма $ {\textstyle\sum_{k=1}^n}a_k\times b_k$ является суммой площадей прямоугольников и по свойству площади равна площади квадрата (то есть 1)).
А это значит что:
$ {\textstyle\sum_{k=1}^n}\frac{a_k}{b_k}\geq1 $ . А это и значит, что как бы не резать квадрат на прямоугольники, сумма их пузатостей будет не меньше 1.
а) На плоскости расположены четыре круга так, что первый касается второго в точке $A$, второй — третьего в точке $B$, третий — четвертого в точке $C$ и четвертый — первого в точке $D$ (рис. 2). Докажите, что через четыре названные точки можно провести окружность или прямую.
б) *В пространстве расположены четыре шара так, что первый касается второго в точке $A$, второй — третьего в точке $B$, третий — четвертого в точке $C$ и четвертый — первого в точке $D$. Докажите, что через четыре названные точки можно провести окружность или прямую.
в) *В пространстве расположены четыре шара так, что каждый касается трех других. Докажите, что шесть точек касания принадлежат одной сфере или одной плоскости.
Решение
а) Прежде всего, что если какие-то три из точек $A$, $B$, $C$, $D$ лежат на одной прямой, то и четвертая точка лежит на той же прямой (рис. 1).
рис. 1
Пусть все четыре круга касаются внешним образом (рис. 2) и пусть $AA_{1}$, $BB_{1}$, $CC_{1}$, $DD_{1}$ — отрезки общих касательных.
рис. 2
Из $\widehat{A_{1}A}D = \widehat{D_{1}D}A$, $\widehat{D_{1}D}C = \widehat{C_{1}C}D$, $\widehat{B_{1}B}C = \widehat{C_{1}C}B$ и $\widehat{A_{1}A}B = \widehat{B_{1}B}A$ следует $\widehat{A} + \widehat{C} = \widehat{B} + \widehat{D}$; значит, около четырехугольника $ABCD$ можно описать окружность.
В случае, когда не все четыре круга касаются внешним образом (рис. 3), рассуждения аналогичны.
рис. 3.
б) Если центры шаров лежат в одной плоскости, то и все точки касания лежат в этой плоскости, так что в этом случае задача б) сводится к задаче а).
Если же центры $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ — не в одной плоскости, проведем плоскость через три точки касания, например $A$, $B$, $C$ (рис. 4), и докажем, что четвертая точка $D$ принадлежит этой плоскости.
рис. 4.
Пусть $h_{1}$, $h_{2}$, $h_{3}$, $h_{4}$ — расстояния от точек $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ до плоскости $(ABC)$, а $R_{1}$, $R_{2}$, $R_{3}$, $R_{4}$ — радиусы шаров. Ясно, что $\frac{h_{1}}{h_{2}} = \frac{R_{1}}{R_{2}}$, $\frac{h_{2}}{h_{3}} = \frac{R_{2}}{R_{3}}$, $\frac{h_{3}}{h_{4}} = \frac{R_{3}}{R_{4}}$ (см. рис. 4). Перемножая эти отношения, получаем $\frac{h_{1}}{h_{4}} = \frac{R_{1}}{R_{4}} = \frac{\mid O_{1}D\mid}{\mid O_{4}D\mid}$, что и означает принадлежность точки $D$ плоскости $(ABC)$.
Таким образом, плоскость $(ABC)$ пересекает шары по четырем кругам, касающимся, соответственно, друг друга в точках $A$, $B$, $C$, $D$ так, как сказано в пункте а). Из этого следует утверждение задачи б).
в) Пусть $A$ — точка касания первого и второго, $B$ — первого и третьего, $C$ — первого и четвертого, $D$ — второго и третьего, $E$ — второго и четвертого, $F$ — третьего и четвертого шаров.
По доказанному в пункте б) точки $A$, $C$, $F$, $D$ лежат на одной окружности или прямой. Точки $A$, $E$, $F$, $B$ обладают тем же свойством.
У этих двух четверок точек есть две общие точки: $A$ и $F$. Поэтому если одна из четверок лежит на прямой, все шесть точек лежат в одной плоскости.
Если же эти четверки лежат на двух окружностях, находящихся в разных плоскостях и имеющих общую хорду $AF$, то через эти окружности можно провести сферу; центром этой сферы является точка пересечения перпендикуляров к плоскостям этих окружностей (эти перпендикуляры лежат в плоскости, проходящей через центры окружностей и середину их общей хорды $AF$).
М655.На столе у чиновника Министерства околичностей лежит $n$ томов Британской энциклопедии, сложенных в несколько стопок. Каждый день, придя на работу, чиновник берет из каждой стопке по одному тому и складывает взятые тома в новую стопку, затем располагает стопки по количеству томов (в невозрастающем порядке) и заполняет ведомость, в которой указывает количество томов в каждой стопке. Кроме сказанного выше, чиновник никогда ничего не делает.
а) Какая запись будет сделана в ведомости через месяц, если общее кол-во томов $n = 3, n = 6, n = 10$ (начальное расположение произвольно)
б) Докажите, что если общее число томов $n=\frac{1}{2} k (k+1),$ где $k$ — натуральное, то, начиная с некоторого дня, ведомость будет заполняться одинаковыми записями.
в) Исследуйте, что будет через много дней работы при других значениях $n.$
Решение
При $n = 3$ возможны всего три расположения: $(1, 1, 1)$ — три стопка по одному тому; $(3)$ — одна стопка из трех томов; $(2, 1)$ — одна стопка из двух томов и одна стопка из одного тома.
рис. 1
Стрелки на рисунке 1 показывают, во что каждое расположение переходит на следующий день. Из рисунка видно, что, с чего бы мы не начали, не позже, чем через два дня (что записано как $T = 2$), возникает расположение $(2, 1),$ и затем оно будет повторяться. На рисунке 2 показан аналогичный граф для $n = 6.$ Число $m$ возможных расположений здесь равно $11.$ Не позже, чем через $T = 6$ дней после начала работы возникнет расположение $(3, 2, 1),$ и затем оно будет повторяться. Аналогичный граф для $n=10$ имеет $m=42$ вершины, и не позже, чем через $T=12$ дней после начала возникнет расположение $(4, 3, 2, 1),$ и затем оно будет повторяться.
рис. 2
Разумеется, далеко не каждый ориентированный граф из каждой вершины которого выходят одна стрелка, обладает единственной «конечной» вершиной, то есть не всегда, идя по его стрелкам, мы придем в одну и ту же вершину и там останемся (рис. 3). Граф может распадаться на отдельные части, не связанные между собой ни одной стрелкой, может содержать циклы. Поэтому тот факт, что при $n=\frac{1}{2} k (k+1),$ начиная с некоторого дня, получается одно и то же расположение совсем не очевиден, и мы сейчас его докажем. Рассмотрим сразу произвольное $n.$
рис. 3
Вообразим четверть бесконечного листа бумаги в клетку (рис. 4), клетки которого пронумерованы парами натуральных чисел слева направо и снизу вверх: клетка с номером $(x, y)$ стоит в столбце $x$ и в строке $y.$ Изготовим $n$ фишек и разместим их в клетках нашей бумаги следующим образом: в первом столбце столько фишек, сколько томов в первой стопке, во втором столько, сколько томов во второй стопке и т.д. Размещение фишек на рисунке 4 соответствует расположению $(8, 3, 3, 1, 1, 1).$ Преобразование, которое каждый день выполняет чиновник, можно представить в виде трах операций:
Уберем фишки, находящиеся в самой нижней строке.
Передвинем оставшиеся фишки на одну клетку вниз и на одну клетку вправо.
Теперь выложим на бумагу убранные фишки, но не на нижнюю строку, а на самый левый столбец (освободившийся).
рис. 4
В результате этих операций рисунок 4 перейдет в рисунок 5. Правда, результат действия наших трех операций отличается от того, что делает чиновник, тем, что в конце дня чиновник еще упорядочивает стопки по убыванию, но мы пока что не будем делать таких преобразований.
При нашей последовательности операций фишка $(x, y)$ перейдет в клетку $(1, x),$ если $y = 1,$ или $(x+1,y-1),$ если $y>1.$
рис. 5
Назовем $i$-й диагональю совокупность тех клеток $(x, y),$ для которых $x+y=i+1.$ Под действие нашего преобразования фишки, находящиеся на $i$-й диагонали, не сойдут с нее, а будут перемещаться по правилу: $$(1, i)\longrightarrow(2, i-1)\longrightarrow(3, i-2)\longrightarrow…\longrightarrow(i, 1)\longrightarrow(1, i)$$
Теперь дополним преобразование, тем, что в каждой строке, где это возможно, сдвинем все фишки на одно место влево, тем самым упорядочим стопки как надо. Теперь все наше преобразование точно соответствует тому, что делает чиновник. Сдвиг влево означает, что для некоторых фишек величина $x+y$ может уменьшаться, но она по-прежнему не может увеличиваться. Но эта величина — натуральное число, значит она не может уменьшаться бесконечное количество раз. Наступит такой момент, что для всех фишек величина $x+y$ уже не будет уменьшаться. Таким образом каждая фишка займет свою диагональ. Докажем, что тогда для всякого $i$ будет выполняться следующее условие: если $i$-я диагональ не полностью заполнена фишками, то в $(i+1)$-й диагонали нет ни одной фишки.
Докажем от противного: пусть в $i$-й диагонали есть пустая клетка, а в $(i+1)$-й диагонали есть хоть одна фишка. Фишки на $i$-й диагонали (если они есть) передвигаются, попадая через каждые $i$ шагов на прежние места. фишка на $(i+1)$-й диагонали передвигается, попадая через каждые $(i+1)$ шагов на прежнее место. Посмотрим, что происходит в моменты $0, (i+1), 2(i+1), 3(i+1),…,i(i+1).$ Фишка на $(i+1)$-й диагонали в эти моменты оказывается там же, где и была в нулевой момент. Пустое место на $i$-й диагонали как бы двигается вместе с фишками, значит оно побывает на всех клетках $i$-й диагонали, а значит побывает слева от фишки на $(i+1)$-й диагонали. Но тогда эта фишка должна сдвинуться влево, что невозможно, так как мы предположили, что такие перемещения уже закончились.
Что же это за расположение фишек, при котором за неполной диагональю может идти только пустая? Если $n=\frac{1}{2} k (k+1)$, то такое расположение, очевидно, только одно: все диагонали от 1-й до $k$-й заполнены фишками, а все остальные — пустые. Это доказывает утверждение б), так как все фишки не покидают своих диагоналей, и не сдвигаются влево с какого-то момента.
Пусть теперь $n\neq\frac{1}{2} k (k+1)$. Тогда существует такое $k,$ что $$\frac{1}{2} k (k+1)<n<\frac{1}{2} (k+1) (k+2).$$
Положим $r=n-\frac{1}{2} k (k+1).$ В этом случае расположение фишек, при котором за неполной диагональю следуют пустые такое: все диагонали от 1-й до $k$-й заполнены фишками, на $(k+1)$-й диагонали находится $r$ фишек, а следующие диагонали пусты. Фишки, находящиеся на $(k+1)$-й диагонали перемещаются по ней, попадая через каждые $(k+1)$ шагов на свои прежние места. Это ответ на вопрос в).