7.4 Свойства интегрируемых функций

1. Интегрируемость модуля.

2. Интегрируемость линейной комбинации.

3. Интегрируемость произведения.

4. Интегрируемость на подынтервалах.

5. Изменение значений функции.

12.6 Частные производные высших порядков

Пусть $f – $ действительная функция на открытом множестве $E \subset \mathbb {R}^n.$Предположим, что на этом множестве у нее существует $i — $я частная производная. Это $–$ тоже функция на $E$. Может оказаться, что и у этой функции существует частная производная, например, по переменной $x^{j}$. Она называется частной производной функции $f$ второго порядка и обозначается
$$ \frac{\partial^2 f}{\partial x^j \partial x^i}\left(x_0\right) = \frac{\partial}{\partial x^j}\left(\frac{\partial f}{\partial x^i}\right)\left(x_0\right),\:\:f^{\prime\prime}_{x^i x^j} (x_0),\:\: D_{ij} f\left(x_0\right). $$
По индукции определяются частные производные любого порядка. Частная производная порядка $q$, взятая по переменным $x^{i_1},x^{i_2},…,x^{i_q}$, в точке $x_0$ обозначается
$$ \frac{\partial^q f}{\partial x^{i_1} \cdots \partial x^{i_q}}\left(x_0\right). $$
Если среди индексов $i^1,…i^q$ имеются различные, то соответствующая частная производная называется смешанной.

Пример. Пусть $f\left( x, y \right) = x^3 y − 2xy^2$. Частные производные первого порядка равны $f^{\prime}_x = 3x^2y−2y^2,f^{\prime}_y = x^3 − 4xy.$ Частные производные второго порядка равны $f^{\prime\prime}_{xx} = f^{\prime\prime}_{x^2} = 6xy, f^{\prime\prime}_{xy} = 3x^2 − 4xy,f^{\prime\prime}_{yy} = f^{\prime\prime}_{y^2} = −4x,f^{\prime\prime}_{yx} = 3x^2−4y.$

Две различные смешанные производные оказались равными. Возникает вопрос: всегда ли это так?

Пример функции, у которой смешанные производные различные.
Пусть
$$\displaystyle \begin{equation*}f\left(x,y\right) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, x^2+y^2>0\\ 0, x\:=\:y\:=\:0 \end{cases}\end{equation*}$$
Найдем
$$f^{\prime}_x = y\left[\frac{x^2-y^2}{x^2+y^2}+x\frac{2x(x^2+y^2)-2x\left(x^2-y^2\right)}{ (x^2+y^2)^2}\right] =$$ $$=\:\frac{y}{x^2+y^2}\left(x^2-y^2+\frac{4x^2y^2}{x^2+y^2}\right),\:\left(x^2+y^2 > 0\right) \: ,$$ $$f_x^{\prime}\left(0,0\right)\:=\:0 , f_{xy}^{\prime\prime} = \lim\limits_{y\to 0}\frac{f^{\prime}_x\left(0,y\right)\:-\: f^{\prime}_x(0,0)}{y} = -1 , f_{yx}^{\prime\prime}\left(0,0\right) = 1.$$
Итак, получили, что смешанные производные не равны между собой.

Теорема Шварца: Пусть $f – $ действительная функция, определенная в некоторой окрестности $U$ точки $x_0$ и имеющая всюду в этой окрестности частные производные $\displaystyle \frac{\partial f}{\partial x^i}, \frac{\partial f}{\partial x^j} \frac{\partial^2 f}{\partial x^i \partial x^j}$. Если смешанная производная $\displaystyle \frac{\partial^2 f}{\partial x^i \partial x^j}$ непрерывна в точке $x_0$, то в этой точке существует и другая смешанная производная $\displaystyle \frac{\partial^2 f}{\partial x^j \partial x^i}(x_0)$, и при этом справедливо равенство
$$\frac{\partial^2 f}{\partial x^j \partial x^i}\left(x_0\right) = \frac{\partial^2 f}{\partial x^i \partial x^j}\left(x_0\right).$$

Достаточно доказать теорему для случая $n = 2$, поскольку в ней по существу идет речь только о функциях двух переменных при фиксированных всех остальных. Итак, предположим, что задана функция двух переменных $f\left(x,y\right)$ и существуют $f^{\prime}_x, f^{\prime}_y, f^{\prime\prime}_{xy}$. Нужно доказать, что существует $f^{\prime\prime}_{yx}\left(x_0,y_0\right)$ и она равна $f^{\prime\prime}_{xy}\left(x_0,y_0\right)$.
Рассмотрим разностное отношение
$$Q(h) = \frac{f^{\prime}_y(x_0+h,y_0)\:-\:f^{\prime}_y(x_0,y_0)}{h}$$
Заметим, что при любом $x$
$$f^{\prime}_y\left(x,y_0\right)\: = \: \lim\limits_{\mu \to 0}\frac{f\left(x,y_0\:+\:\mu\right) \:-\:f\left(x,y_0\right)}{\mu}.$$
Обозначим
$$\varphi_{\mu}(x)\:\equiv\: \frac{f(x,y_0\:+\:\mu)\:-\:f(x,y_0)}{\mu},$$
$$Q^{\ast}(h,\mu)\:\equiv\: \frac{\varphi_{\mu}\left(x_0\:+\:h\right)\:-\: \varphi_{\mu}\left(x_0\right)}{h}.$$
Если $h$ фиксировано, то
$$\lim\limits_{\mu\to 0}Q^{\ast}(h,\mu) \:=\: Q(h).$$
Далее, пользуясь формулой конечных приращений, получаем
$$\frac{\varphi_{\mu}\left(x_0\:+\:h\right)\: -\: \varphi_{\mu}\left(x_0\right)}{h}\:=\: \frac{d \varphi_{\mu}}{dx \left(x_0\:+\:\theta_1 h\right)}\: = $$
$$=\: \frac{f^{\prime}_x\left(x_0\:+\: \theta_1 h,y_0\:+\: \mu\right)\:-\: f^{\prime}_x\left(x_0\:+\: \theta_1h,y_0\right)}{\mu}.$$
Теперь воспользуемся формулой конечных приращений по $y$ и получим, что последнее отношение равно
$$\frac{d\varphi_{\mu}}{dx}\left(x_0\:+\: \theta_1h\right)\:=\:\frac{f^{\prime}_x\left(x_0\:+\:\theta_1h,y_0\:+\:\mu\right)\:-\: f^{\prime}_x\left(x_0 \:+\: \theta_1h,y_0\right)}{\mu}\: =$$
$$=\: f^{\prime\prime}_{xy}\left(x_0\:+\: \theta_1h,y_0\:+\: \theta_2\mu\right),$$
где $\theta_1,\theta_2\: –$ величины, зависящие от $h,\mu$ и заключены в интервале $\left(0,1\right).$
Итак, получили $$Q^{\ast}\left(h,\mu\right)\:=\:f^{\prime\prime}_{xy}\left(x_0\:+\: \theta_1h,y_0\:+\:\theta_2\mu\right).$$ Но поскольку $f^{\prime\prime}_{xy}$ непрерывна в точке $\left(x_0,y_0\right)$ по условию, то получаем
$$Q^{\ast}\left(h,\mu\right)\:=\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)\:+\:\varepsilon\left(h,\mu\right),$$
где $\varepsilon\left(h,\mu\right) \to 0$ при $\left(h,\mu\right) \to \left(0,0\right)$.
Зададим $\varepsilon > 0$ и найдем такое $\delta > 0$, что при $0 < |h| < \delta, \: 0 < |\mu| < \delta$ справедливо неравенство $|\varepsilon(h,\mu)| < \varepsilon$. Поэтому при указанных значениях $h,\mu$ имеет место неравенство
$$|Q^{\ast}\left(h,\mu\right)\:-\: f^{\prime\prime}_{xy}\left(x_0,y_0\right)| < \varepsilon .$$
Теперь фиксируем $h, 0<|h|<\delta $,и $\mu$ устремляем к нулю. Тогда получим
$$|Q\left(h\right)\:-\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)| \leq \varepsilon.$$
Это означает, что $\lim\limits_{h\to 0}Q\left(h\right)\:=\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)$. Отсюда следует справедливость теоремы Шварца.

Определение: Пусть $q\:–$ натуральное число. Действительная функция $f$, определенная на открытом множестве $E\subset \mathbb {R}^n$,называется функцией класса $C^q$ на этом множестве, если она имеет все частные производные до порядка $q$ включительно, непрерывные на этом множестве.

Теорема: Если $f\:–\:$функция класса $C^q$ на открытом множестве $E\subset \mathbb {R}^n$, то значение любой смешанной производной порядка $q\:$ не зависит от последовательности, в которой выполняется дифференцирование.

Эта теорема доказывается с помощью теоремы Шварца по индукции. Мы не будем приводить это доказательство.

Примеры решения задач

  1. Найти частные производные второго порядка функции $f\left(x,y\right)\:=\:x^3\:+\:y^3\:-\:3xy.$
  2. Решение

    $\displaystyle\frac{\partial f}{\partial x}\:=\:3x^2\:-\:3y$
    $\displaystyle\frac{\partial f}{\partial y}\:=\:3y^2\:-\:3x$
    $\displaystyle\frac{\partial^2 f}{\partial x^2}\:=\:6x$
    $\displaystyle\frac{\partial^2 f}{\partial y^2}\:=\:6y$
    $\displaystyle\frac{\partial^2 f}{\partial x \partial y}\:=\:-3.$

  3. Найти частные производные второго порядка функции $f(x,y)\:= \:\sin x\:-\:x^2y.$
  4. Решение

    $\displaystyle\frac{\partial f}{\partial x}\:=\:\cos{x}\:-\:2xy$
    $\displaystyle\frac{\partial f}{\partial y}\:=\:-x^2$
    $\displaystyle\frac{\partial^2 f}{\partial x^2}\:=\:-\sin x\:-\:2y$
    $\displaystyle\frac{\partial^2 f}{\partial y^2}\:=\:0$
    $\displaystyle\frac{\partial^2 f}{\partial x \partial y}\:=\:-2x$
    $\displaystyle\frac{\partial^2 f}{\partial y \partial x}\:=\:-2x.$

  5. Найти дифференциал $df$ функции $f\left(x,y,z\right)\:=\:\sqrt{x^2\:+\:y^2\:+\:z^2}$
  6. Решение

    $\displaystyle\frac{\partial f}{\partial x}\:=\:\frac{x}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
    $\displaystyle\frac{\partial f}{\partial y}\:=\:\frac{y}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
    $\displaystyle\frac{\partial f}{\partial z}\:=\:\frac{z}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
    $\displaystyle df \:=\: \frac{x}{\sqrt{x^2\:+\:y^2\:+\:z^2}} dx\:+\:\frac{y}{\sqrt{x^2\:+\:y^2\:+\:z^2}} dy\:+\:\frac{z}{\sqrt{x^2\:+\:y^2\:+\:z^2}}dz.$

Пройдите тест, чтобы проверить свои знания

См. также:

  1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления Т.I. — М.: ФМЛ, 1962
  2. Кудрявцев Л.Д. Курс математического анализа, т.1. — М.: Дрофа, 2003
  3. Тер-Крикоров А. М., Шабунин М. И, Курс математического анализа. — М.: ФИЗМАТ-ЛИТ, 2003
  4. Никольский С. М. Курс математического анализа. Т. I. — М.: Наука, 1983
  5. <Б.П. Демидович "Сборник задач и упражнений по математическому анализу", Отдел 6, Параграф 2

8.2 Площадь в полярных координатах

$\DeclareMathOperator{\ctg}{ctg}\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\arctg}{arctg} \newcommand{\rndBrcts}[1]{\left ( #1 \right )} \newcommand{\abs}[1]{\left | #1 \right |}$

В полярных координатах положение точки на плоскости характеризуется полярным радиусом $r$ – расстоянием от точки до начала координат и углом $φ$, образованным радиус-вектором точки и положительным направлением оси $Ox$. Будем считать, что $−\pi< φ \leqslant \pi$. Рассмотрим на плоскости множество, ограниченное кривой, заданной уравнением $r=r(\varphi)$ $(\alpha \leqslant \varphi \leqslant \beta)$, и отрезками лучей $\varphi=\alpha$ и $\varphi=\beta$. Предположим, что функция $r(\varphi)$ непрерывна и положительна на $[\alpha ,\beta]$. Можно показать, что это множество квадрируемо. Разобьем отрезок $[\alpha, \beta]$ на части точками $\alpha =\varphi_{0} < \varphi_{1}< \dots < \varphi_{n}= \beta$. Тогда рассматриваемое множество разобьется на криволинейные секторы. Если исходное разбиение отрезка $[\alpha, \beta]$ достаточно мелкое, то, в силу непрерывности функции $r(\varphi),i$-й сектор можно приближенно считать сектором круга. Точнее, если обозначим $$\mu_{i} =\inf_{\varphi_{i} \leqslant \varphi_{i} \leqslant \varphi_{i+1}}r(φ) \;\;\;и\;\;\;Mi=\sup_{\varphi_{i} \leqslant \varphi \leq \varphi_{i+1}}r(φ),$$ то рассматриваемый криволинейный сектор содержит в себе круговой сектор радиуса $\mu_{i}$ и содержится в круговом секторе радиуса $M_{i}$. Площадь внутреннего сектора радиуса $\mu_{i}$ равна $\displaystyle \frac{1}{2}\mu_{i}^{2} \Delta \varphi_{i}$, а площадь внешнего – $\displaystyle \frac{1}{2}M_{i}^2 \Delta \varphi_{i}$, где $\Delta \varphi_{i}$ – угол при вершине. Складывая эти площади, получим $$\frac{1}{2} \sum_{i=0}^{n-1}\mu_{i}^2 \Delta \varphi_{i}\equiv \underline S,$$ $$\frac{1}{2} \sum_{i=0}^{n-1}M{i}^2 \Delta \varphi_{i}\equiv \overline S.$$

Как мы уже отметили, рассматриваемое множество квадрируемо, так что его площадь $S$ удовлетворяет неравенству $\underline S\leqslant S\leqslant \overline S.$ Но $\underline S$ и $\overline S$ представляют собой соответственно нижнюю и верхнюю суммы Дарбу для функции $\displaystyle \frac{1}{2}r^2(\varphi),$ соответствующие данному разбиению отрезка $[\alpha,\beta].$ Поэтому, учитывая, что функция $\displaystyle \frac{1}{2}r^2(\varphi)$ интегрируема по Риману на отрезке $[\alpha; \beta ],$ получаем, что при стремлении к нулю диаметра разбиения верхняя и нижняя суммы Дарбу обе стремятся к $\displaystyle \frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$ Таким образом, мы доказали равенство
$$S=\frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$$

Примеры решения задач

Данные примеры читателю рекомендуется решить самому в качестве тренировки.

  1. Спираль Архимеда задается уравнением $r=a \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi),$ где параметр $a>0.$ Найдите площадь множества точек плоскости, ограниченной спиралью Архимеда.
    Решение

    Площадь множества точек плоскости, ограниченной спиралью Архимеда равна $$S=\frac{1}{2} \int\limits_{0}^{2 \pi}r^2(\varphi)d \varphi = \frac{1}{2} a^2 \int_\limits{0}^{2 \pi} \varphi^2 d \varphi = \frac{4 \pi^3 a^2}{3}$$

    Ответ: $\displaystyle S=\frac{4 \pi^3 a^2}{3}.$

  2. Вычислить площадь фигуры, ограниченной кардиоидой $r=1+ \cos \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi)$
    Решение

    $$S=\frac{1}{2} \int_\limits{0}^{2 \pi}(1+ \cos \varphi)^2 d \varphi = $$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\cos^2\varphi \right )d\varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\frac{1+\cos 2 \varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos\varphi+\frac{\cos2\varphi}{2} \right )d\varphi=$$
    $$=\frac{1}{2}\left ( \frac{3}{2}\varphi + 2\sin\varphi+\frac{\sin2\varphi}{4}\right )\bigg|_{0}^{2\pi}=\frac{3\pi}{2}$$

    Ответ: $\displaystyle S=\frac{3 \pi}{2}.$

  3. Вычислить площадь фигуры, ограниченной линией $r(\varphi)=2 \cos ^2 \varphi$
    Решение

    Так как, $r(\varphi)=2 \cos ^2 \varphi \geq 0$ $\forall \varphi ,$ значит угол принимает все значения от $\alpha = 0$ до $\beta = 2 \pi .$ По рабочей формуле:
    $$S=\frac{1}{2} \int_\limits{\alpha}^{\beta}r^2(\varphi)d \varphi=\frac{1}{2}\int_\limits{0}^{2\pi}(2 \cos^2 \varphi)^2 d \varphi=$$
    $$=\frac{1}{2}\cdot 4 \int_\limits{0}^{2\pi}(\cos^2 \varphi)^2 d \varphi =2\int_\limits{0}^{2\pi}\left ( \frac{1+\cos 2\varphi}{2} \right )^2 d \varphi=$$
    $$=2\cdot \frac{1}{4}\int\limits_{0}^{2\pi} (1+\cos 2\varphi)^2 d \varphi= \frac{1}{2}\int_\limits{0}^{2\pi}(1+2\cos 2\varphi+\cos^22\varphi)d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi} \left ( 1+2\cos2\varphi+\frac{1+\cos4\varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos2\varphi +\frac{\cos4\varphi}{2} \right )d \varphi=$$
    $$=\frac{1}{2}\left ( \frac{3}{2} \varphi+\sin2\varphi+ \frac{\sin4\varphi}{8} \right )\bigg|_{0}^{2\pi}=$$
    $$=\frac{1}{2}\left ( \frac{3}{2}\cdot 2\pi+\sin4\pi+\frac{\sin8\pi}{8}-\left ( \frac{3}{2}\cdot 0 +\sin 0 + \frac{\sin0}{8} \right ) \right )=$$
    $$=\frac{3\pi}{2}$$

    Ответ: $\displaystyle S=\frac{3\pi}{2}.$

  4. Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi$ $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ).$
    Решение

    Фигура, ограниченная окружностями $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi ,$ не определена однозначно и поэтому в условии наложено дополнительное ограничение на угол $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ),$ из которого следует, что необходимо вычислить заштрихованную площадь:

    Сначала найдем луч $\displaystyle \varphi=\frac{\pi}{3},$ по которому пересекаются окружности. Приравниваем функции и решаем уравнение:
    $$\sin \varphi=\sqrt{3} \cos \varphi$$
    $$\frac{\sin \varphi}{\cos \varphi} = \sqrt{3}$$
    $$\tg \varphi = \sqrt{3}$$

    Таким образом: $\displaystyle \varphi=\arctg\sqrt{3}=\frac{\pi}{3}$

    Из чертежа следует, что площадь фигуры нужно искать как сумму площадей:

    • На промежутке $\displaystyle \left [0;\frac{\pi}{3}\right ]$ фигура ограничена отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sin\varphi .$
      $$S_{1}=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(\sin\varphi)^2d \varphi=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}\sin^2 \varphi d \varphi=$$
      $$=\frac{1}{2}\cdot \frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(1-\cos2\varphi)d \varphi=\frac{1}{4}\left ( \varphi-\frac{1}{2}\sin2\varphi \right )\bigg|_{0}^{\frac{\pi}{3}}=$$
      $$=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\sin\frac{2\pi}{3} \right )=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\cdot \frac{\sqrt{3}}{2} \right )=\frac{\pi}{12}-\frac{\sqrt{3}}{16}$$
    • На промежутке $\displaystyle \left [ -\frac{\pi}{3};\frac{\pi}{3}\right ]$ фигура ограничена тем же отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sqrt{3}\cos\varphi .$
      $$S_{2}=\frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sqrt{3}\cos\varphi)^2d \varphi = \frac{3}{2} \int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2\varphi d \varphi=$$
      $$=\frac{3}{2}\cdot \frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos2\varphi)d \varphi= \frac{3}{4}\left ( \varphi + \frac{1}{2} \sin 2\varphi \right )\bigg|_{\frac{\pi}{3}}^{\frac{\pi}{2}}=$$
      $$=\frac{3}{4}\left ( \frac{\pi}{2}+\frac{1}{2}\sin\pi-\left ( \frac{\pi}{3}+\frac{1}{2}\sin\frac{2\pi}{3} \right ) \right )=$$
      $$=\frac{3}{4}\left ( \frac{\pi}{2}+0-\frac{\pi}{3}-\frac{1}{2}\cdot\frac{\sqrt{3}}{2} \right )=\frac{3}{4}\left ( \frac{\pi}{6}-\frac{\sqrt{3}}{4} \right )=\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}$$
    • Пользуемся аддитивностью площади:
      $$S=S_{1}+S_{2}=\frac{\pi}{12}-\frac{\sqrt{3}}{16}+\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}=$$
      $$=\frac{5\pi}{24}-\frac{\sqrt{3}}{4}=\frac{5\pi-6\sqrt{3}}{24}$$

    Ответ: $\displaystyle S=\frac{5\pi-6\sqrt{3}}{24}.$

Площадь в полярных координатах

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Площадь в полярных координатах».

См. также: