Здесь будет опубликован раздел 3.3 Первый замечательный предел (c. 60)
Рубрика: Лекции по матану
По материалам учебного пособия В. И. Коляда, А. А. Кореновский. Курс лекций по математическому анализу
7.3 Классы интегрируемых функций
7.4 Свойства интегрируемых функций
1. Интегрируемость модуля.
2. Интегрируемость линейной комбинации.
3. Интегрируемость произведения.
4. Интегрируемость на подынтервалах.
5. Изменение значений функции.
12.6 Частные производные высших порядков
Пусть $f – $ действительная функция на открытом множестве $E \subset \mathbb {R}^n.$Предположим, что на этом множестве у нее существует $i — $я частная производная. Это $–$ тоже функция на $E$. Может оказаться, что и у этой функции существует частная производная, например, по переменной $x^{j}$. Она называется частной производной функции $f$ второго порядка и обозначается
$$ \frac{\partial^2 f}{\partial x^j \partial x^i}\left(x_0\right) = \frac{\partial}{\partial x^j}\left(\frac{\partial f}{\partial x^i}\right)\left(x_0\right),\:\:f^{\prime\prime}_{x^i x^j} (x_0),\:\: D_{ij} f\left(x_0\right). $$
По индукции определяются частные производные любого порядка. Частная производная порядка $q$, взятая по переменным $x^{i_1},x^{i_2},…,x^{i_q}$, в точке $x_0$ обозначается
$$ \frac{\partial^q f}{\partial x^{i_1} \cdots \partial x^{i_q}}\left(x_0\right). $$
Если среди индексов $i^1,…i^q$ имеются различные, то соответствующая частная производная называется смешанной.
Две различные смешанные производные оказались равными. Возникает вопрос: всегда ли это так?
Пусть
$$\displaystyle \begin{equation*}f\left(x,y\right) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, x^2+y^2>0\\ 0, x\:=\:y\:=\:0 \end{cases}\end{equation*}$$
Найдем
$$f^{\prime}_x = y\left[\frac{x^2-y^2}{x^2+y^2}+x\frac{2x(x^2+y^2)-2x\left(x^2-y^2\right)}{ (x^2+y^2)^2}\right] =$$ $$=\:\frac{y}{x^2+y^2}\left(x^2-y^2+\frac{4x^2y^2}{x^2+y^2}\right),\:\left(x^2+y^2 > 0\right) \: ,$$ $$f_x^{\prime}\left(0,0\right)\:=\:0 , f_{xy}^{\prime\prime} = \lim\limits_{y\to 0}\frac{f^{\prime}_x\left(0,y\right)\:-\: f^{\prime}_x(0,0)}{y} = -1 , f_{yx}^{\prime\prime}\left(0,0\right) = 1.$$
Итак, получили, что смешанные производные не равны между собой.
Теорема Шварца: Пусть $f – $ действительная функция, определенная в некоторой окрестности $U$ точки $x_0$ и имеющая всюду в этой окрестности частные производные $\displaystyle \frac{\partial f}{\partial x^i}, \frac{\partial f}{\partial x^j} \frac{\partial^2 f}{\partial x^i \partial x^j}$. Если смешанная производная $\displaystyle \frac{\partial^2 f}{\partial x^i \partial x^j}$ непрерывна в точке $x_0$, то в этой точке существует и другая смешанная производная $\displaystyle \frac{\partial^2 f}{\partial x^j \partial x^i}(x_0)$, и при этом справедливо равенство
$$\frac{\partial^2 f}{\partial x^j \partial x^i}\left(x_0\right) = \frac{\partial^2 f}{\partial x^i \partial x^j}\left(x_0\right).$$
Достаточно доказать теорему для случая $n = 2$, поскольку в ней по существу идет речь только о функциях двух переменных при фиксированных всех остальных. Итак, предположим, что задана функция двух переменных $f\left(x,y\right)$ и существуют $f^{\prime}_x, f^{\prime}_y, f^{\prime\prime}_{xy}$. Нужно доказать, что существует $f^{\prime\prime}_{yx}\left(x_0,y_0\right)$ и она равна $f^{\prime\prime}_{xy}\left(x_0,y_0\right)$.
Рассмотрим разностное отношение
$$Q(h) = \frac{f^{\prime}_y(x_0+h,y_0)\:-\:f^{\prime}_y(x_0,y_0)}{h}$$
Заметим, что при любом $x$
$$f^{\prime}_y\left(x,y_0\right)\: = \: \lim\limits_{\mu \to 0}\frac{f\left(x,y_0\:+\:\mu\right) \:-\:f\left(x,y_0\right)}{\mu}.$$
Обозначим
$$\varphi_{\mu}(x)\:\equiv\: \frac{f(x,y_0\:+\:\mu)\:-\:f(x,y_0)}{\mu},$$
$$Q^{\ast}(h,\mu)\:\equiv\: \frac{\varphi_{\mu}\left(x_0\:+\:h\right)\:-\: \varphi_{\mu}\left(x_0\right)}{h}.$$
Если $h$ фиксировано, то
$$\lim\limits_{\mu\to 0}Q^{\ast}(h,\mu) \:=\: Q(h).$$
Далее, пользуясь формулой конечных приращений, получаем
$$\frac{\varphi_{\mu}\left(x_0\:+\:h\right)\: -\: \varphi_{\mu}\left(x_0\right)}{h}\:=\: \frac{d \varphi_{\mu}}{dx \left(x_0\:+\:\theta_1 h\right)}\: = $$
$$=\: \frac{f^{\prime}_x\left(x_0\:+\: \theta_1 h,y_0\:+\: \mu\right)\:-\: f^{\prime}_x\left(x_0\:+\: \theta_1h,y_0\right)}{\mu}.$$
Теперь воспользуемся формулой конечных приращений по $y$ и получим, что последнее отношение равно
$$\frac{d\varphi_{\mu}}{dx}\left(x_0\:+\: \theta_1h\right)\:=\:\frac{f^{\prime}_x\left(x_0\:+\:\theta_1h,y_0\:+\:\mu\right)\:-\: f^{\prime}_x\left(x_0 \:+\: \theta_1h,y_0\right)}{\mu}\: =$$
$$=\: f^{\prime\prime}_{xy}\left(x_0\:+\: \theta_1h,y_0\:+\: \theta_2\mu\right),$$
где $\theta_1,\theta_2\: –$ величины, зависящие от $h,\mu$ и заключены в интервале $\left(0,1\right).$
Итак, получили $$Q^{\ast}\left(h,\mu\right)\:=\:f^{\prime\prime}_{xy}\left(x_0\:+\: \theta_1h,y_0\:+\:\theta_2\mu\right).$$ Но поскольку $f^{\prime\prime}_{xy}$ непрерывна в точке $\left(x_0,y_0\right)$ по условию, то получаем
$$Q^{\ast}\left(h,\mu\right)\:=\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)\:+\:\varepsilon\left(h,\mu\right),$$
где $\varepsilon\left(h,\mu\right) \to 0$ при $\left(h,\mu\right) \to \left(0,0\right)$.
Зададим $\varepsilon > 0$ и найдем такое $\delta > 0$, что при $0 < |h| < \delta, \: 0 < |\mu| < \delta$ справедливо неравенство $|\varepsilon(h,\mu)| < \varepsilon$. Поэтому при указанных значениях $h,\mu$ имеет место неравенство
$$|Q^{\ast}\left(h,\mu\right)\:-\: f^{\prime\prime}_{xy}\left(x_0,y_0\right)| < \varepsilon .$$
Теперь фиксируем $h, 0<|h|<\delta $,и $\mu$ устремляем к нулю. Тогда получим
$$|Q\left(h\right)\:-\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)| \leq \varepsilon.$$
Это означает, что $\lim\limits_{h\to 0}Q\left(h\right)\:=\:f^{\prime\prime}_{xy}\left(x_0,y_0\right)$. Отсюда следует справедливость теоремы Шварца.
Определение: Пусть $q\:–$ натуральное число. Действительная функция $f$, определенная на открытом множестве $E\subset \mathbb {R}^n$,называется функцией класса $C^q$ на этом множестве, если она имеет все частные производные до порядка $q$ включительно, непрерывные на этом множестве.
Теорема: Если $f\:–\:$функция класса $C^q$ на открытом множестве $E\subset \mathbb {R}^n$, то значение любой смешанной производной порядка $q\:$ не зависит от последовательности, в которой выполняется дифференцирование.
Эта теорема доказывается с помощью теоремы Шварца по индукции. Мы не будем приводить это доказательство.
Примеры решения задач
- Найти частные производные второго порядка функции $f\left(x,y\right)\:=\:x^3\:+\:y^3\:-\:3xy.$
- Найти частные производные второго порядка функции $f(x,y)\:= \:\sin x\:-\:x^2y.$
- Найти дифференциал $df$ функции $f\left(x,y,z\right)\:=\:\sqrt{x^2\:+\:y^2\:+\:z^2}$
Решение
$\displaystyle\frac{\partial f}{\partial x}\:=\:3x^2\:-\:3y$
$\displaystyle\frac{\partial f}{\partial y}\:=\:3y^2\:-\:3x$
$\displaystyle\frac{\partial^2 f}{\partial x^2}\:=\:6x$
$\displaystyle\frac{\partial^2 f}{\partial y^2}\:=\:6y$
$\displaystyle\frac{\partial^2 f}{\partial x \partial y}\:=\:-3.$
Решение
$\displaystyle\frac{\partial f}{\partial x}\:=\:\cos{x}\:-\:2xy$
$\displaystyle\frac{\partial f}{\partial y}\:=\:-x^2$
$\displaystyle\frac{\partial^2 f}{\partial x^2}\:=\:-\sin x\:-\:2y$
$\displaystyle\frac{\partial^2 f}{\partial y^2}\:=\:0$
$\displaystyle\frac{\partial^2 f}{\partial x \partial y}\:=\:-2x$
$\displaystyle\frac{\partial^2 f}{\partial y \partial x}\:=\:-2x.$
Решение
$\displaystyle\frac{\partial f}{\partial x}\:=\:\frac{x}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
$\displaystyle\frac{\partial f}{\partial y}\:=\:\frac{y}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
$\displaystyle\frac{\partial f}{\partial z}\:=\:\frac{z}{\sqrt{x^2\:+\:y^2\:+\:z^2}}$
$\displaystyle df \:=\: \frac{x}{\sqrt{x^2\:+\:y^2\:+\:z^2}} dx\:+\:\frac{y}{\sqrt{x^2\:+\:y^2\:+\:z^2}} dy\:+\:\frac{z}{\sqrt{x^2\:+\:y^2\:+\:z^2}}dz.$
Пройдите тест, чтобы проверить свои знания
См. также:
- Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления Т.I. — М.: ФМЛ, 1962
- Кудрявцев Л.Д. Курс математического анализа, т.1. — М.: Дрофа, 2003
- Тер-Крикоров А. М., Шабунин М. И, Курс математического анализа. — М.: ФИЗМАТ-ЛИТ, 2003
- Никольский С. М. Курс математического анализа. Т. I. — М.: Наука, 1983
- <Б.П. Демидович "Сборник задач и упражнений по математическому анализу", Отдел 6, Параграф 2
8.2 Площадь в полярных координатах
$\DeclareMathOperator{\ctg}{ctg}\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\arctg}{arctg} \newcommand{\rndBrcts}[1]{\left ( #1 \right )} \newcommand{\abs}[1]{\left | #1 \right |}$
В полярных координатах положение точки на плоскости характеризуется полярным радиусом $r$ – расстоянием от точки до начала координат и углом $φ$, образованным радиус-вектором точки и положительным направлением оси $Ox$. Будем считать, что $−\pi< φ \leqslant \pi$. Рассмотрим на плоскости множество, ограниченное кривой, заданной уравнением $r=r(\varphi)$ $(\alpha \leqslant \varphi \leqslant \beta)$, и отрезками лучей $\varphi=\alpha$
и $\varphi=\beta$. Предположим, что функция $r(\varphi)$ непрерывна и положительна на $[\alpha ,\beta]$. Можно показать, что это множество квадрируемо. Разобьем отрезок $[\alpha, \beta]$ на части точками $\alpha =\varphi_{0} < \varphi_{1}< \dots < \varphi_{n}= \beta$. Тогда рассматриваемое множество разобьется на криволинейные секторы. Если исходное разбиение отрезка $[\alpha, \beta]$ достаточно мелкое, то, в силу непрерывности функции $r(\varphi),i$-й сектор можно приближенно считать сектором круга. Точнее, если обозначим $$\mu_{i} =\inf_{\varphi_{i} \leqslant \varphi_{i} \leqslant \varphi_{i+1}}r(φ) \;\;\;и\;\;\;Mi=\sup_{\varphi_{i} \leqslant \varphi \leq \varphi_{i+1}}r(φ),$$ то рассматриваемый криволинейный сектор содержит в себе круговой сектор радиуса $\mu_{i}$ и содержится в круговом секторе радиуса $M_{i}$. Площадь внутреннего сектора радиуса $\mu_{i}$ равна $\displaystyle \frac{1}{2}\mu_{i}^{2} \Delta \varphi_{i}$, а площадь внешнего – $\displaystyle \frac{1}{2}M_{i}^2 \Delta \varphi_{i}$, где $\Delta \varphi_{i}$ – угол при вершине. Складывая эти площади, получим $$\frac{1}{2} \sum_{i=0}^{n-1}\mu_{i}^2 \Delta \varphi_{i}\equiv \underline S,$$ $$\frac{1}{2} \sum_{i=0}^{n-1}M{i}^2 \Delta \varphi_{i}\equiv \overline S.$$
Как мы уже отметили, рассматриваемое множество квадрируемо, так что его площадь $S$ удовлетворяет неравенству $\underline S\leqslant S\leqslant \overline S.$ Но $\underline S$ и $\overline S$ представляют собой соответственно нижнюю и верхнюю суммы Дарбу для функции $\displaystyle \frac{1}{2}r^2(\varphi),$ соответствующие данному разбиению отрезка $[\alpha,\beta].$ Поэтому, учитывая, что функция $\displaystyle \frac{1}{2}r^2(\varphi)$ интегрируема по Риману на отрезке $[\alpha; \beta ],$ получаем, что при стремлении к нулю диаметра разбиения верхняя и нижняя суммы Дарбу обе стремятся к $\displaystyle \frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$ Таким образом, мы доказали равенство
$$S=\frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$$
Примеры решения задач
Данные примеры читателю рекомендуется решить самому в качестве тренировки.
- Спираль Архимеда задается уравнением $r=a \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi),$ где параметр $a>0.$ Найдите площадь множества точек плоскости, ограниченной спиралью Архимеда.
Решение
Площадь множества точек плоскости, ограниченной спиралью Архимеда равна $$S=\frac{1}{2} \int\limits_{0}^{2 \pi}r^2(\varphi)d \varphi = \frac{1}{2} a^2 \int_\limits{0}^{2 \pi} \varphi^2 d \varphi = \frac{4 \pi^3 a^2}{3}$$
Ответ: $\displaystyle S=\frac{4 \pi^3 a^2}{3}.$
- Вычислить площадь фигуры, ограниченной кардиоидой $r=1+ \cos \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi)$
Решение
$$S=\frac{1}{2} \int_\limits{0}^{2 \pi}(1+ \cos \varphi)^2 d \varphi = $$
$$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\cos^2\varphi \right )d\varphi=$$
$$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( 1+2\cos\varphi+\frac{1+\cos 2 \varphi}{2} \right )d \varphi=$$
$$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos\varphi+\frac{\cos2\varphi}{2} \right )d\varphi=$$
$$=\frac{1}{2}\left ( \frac{3}{2}\varphi + 2\sin\varphi+\frac{\sin2\varphi}{4}\right )\bigg|_{0}^{2\pi}=\frac{3\pi}{2}$$Ответ: $\displaystyle S=\frac{3 \pi}{2}.$
- Вычислить площадь фигуры, ограниченной линией $r(\varphi)=2 \cos ^2 \varphi$
Решение
Так как, $r(\varphi)=2 \cos ^2 \varphi \geq 0$ $\forall \varphi ,$ значит угол принимает все значения от $\alpha = 0$ до $\beta = 2 \pi .$ По рабочей формуле:
$$S=\frac{1}{2} \int_\limits{\alpha}^{\beta}r^2(\varphi)d \varphi=\frac{1}{2}\int_\limits{0}^{2\pi}(2 \cos^2 \varphi)^2 d \varphi=$$
$$=\frac{1}{2}\cdot 4 \int_\limits{0}^{2\pi}(\cos^2 \varphi)^2 d \varphi =2\int_\limits{0}^{2\pi}\left ( \frac{1+\cos 2\varphi}{2} \right )^2 d \varphi=$$
$$=2\cdot \frac{1}{4}\int\limits_{0}^{2\pi} (1+\cos 2\varphi)^2 d \varphi= \frac{1}{2}\int_\limits{0}^{2\pi}(1+2\cos 2\varphi+\cos^22\varphi)d \varphi=$$
$$=\frac{1}{2}\int_\limits{0}^{2\pi} \left ( 1+2\cos2\varphi+\frac{1+\cos4\varphi}{2} \right )d \varphi=$$
$$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos2\varphi +\frac{\cos4\varphi}{2} \right )d \varphi=$$
$$=\frac{1}{2}\left ( \frac{3}{2} \varphi+\sin2\varphi+ \frac{\sin4\varphi}{8} \right )\bigg|_{0}^{2\pi}=$$
$$=\frac{1}{2}\left ( \frac{3}{2}\cdot 2\pi+\sin4\pi+\frac{\sin8\pi}{8}-\left ( \frac{3}{2}\cdot 0 +\sin 0 + \frac{\sin0}{8} \right ) \right )=$$
$$=\frac{3\pi}{2}$$Ответ: $\displaystyle S=\frac{3\pi}{2}.$
- Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi$ $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ).$
Решение
Фигура, ограниченная окружностями $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi ,$ не определена однозначно и поэтому в условии наложено дополнительное ограничение на угол $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ),$ из которого следует, что необходимо вычислить заштрихованную площадь:
Сначала найдем луч $\displaystyle \varphi=\frac{\pi}{3},$ по которому пересекаются окружности. Приравниваем функции и решаем уравнение:
$$\sin \varphi=\sqrt{3} \cos \varphi$$
$$\frac{\sin \varphi}{\cos \varphi} = \sqrt{3}$$
$$\tg \varphi = \sqrt{3}$$Таким образом: $\displaystyle \varphi=\arctg\sqrt{3}=\frac{\pi}{3}$
Из чертежа следует, что площадь фигуры нужно искать как сумму площадей:
- На промежутке $\displaystyle \left [0;\frac{\pi}{3}\right ]$ фигура ограничена отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sin\varphi .$
$$S_{1}=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(\sin\varphi)^2d \varphi=\frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}\sin^2 \varphi d \varphi=$$
$$=\frac{1}{2}\cdot \frac{1}{2}\int_\limits{0}^{\frac{\pi}{3}}(1-\cos2\varphi)d \varphi=\frac{1}{4}\left ( \varphi-\frac{1}{2}\sin2\varphi \right )\bigg|_{0}^{\frac{\pi}{3}}=$$
$$=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\sin\frac{2\pi}{3} \right )=\frac{1}{4}\left ( \frac{\pi}{3}-\frac{1}{2}\cdot \frac{\sqrt{3}}{2} \right )=\frac{\pi}{12}-\frac{\sqrt{3}}{16}$$ - На промежутке $\displaystyle \left [ -\frac{\pi}{3};\frac{\pi}{3}\right ]$ фигура ограничена тем же отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sqrt{3}\cos\varphi .$
$$S_{2}=\frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sqrt{3}\cos\varphi)^2d \varphi = \frac{3}{2} \int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2\varphi d \varphi=$$
$$=\frac{3}{2}\cdot \frac{1}{2}\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos2\varphi)d \varphi= \frac{3}{4}\left ( \varphi + \frac{1}{2} \sin 2\varphi \right )\bigg|_{\frac{\pi}{3}}^{\frac{\pi}{2}}=$$
$$=\frac{3}{4}\left ( \frac{\pi}{2}+\frac{1}{2}\sin\pi-\left ( \frac{\pi}{3}+\frac{1}{2}\sin\frac{2\pi}{3} \right ) \right )=$$
$$=\frac{3}{4}\left ( \frac{\pi}{2}+0-\frac{\pi}{3}-\frac{1}{2}\cdot\frac{\sqrt{3}}{2} \right )=\frac{3}{4}\left ( \frac{\pi}{6}-\frac{\sqrt{3}}{4} \right )=\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}$$ - Пользуемся аддитивностью площади:
$$S=S_{1}+S_{2}=\frac{\pi}{12}-\frac{\sqrt{3}}{16}+\frac{3\pi}{24}-\frac{3\sqrt{3}}{16}=$$
$$=\frac{5\pi}{24}-\frac{\sqrt{3}}{4}=\frac{5\pi-6\sqrt{3}}{24}$$
Ответ: $\displaystyle S=\frac{5\pi-6\sqrt{3}}{24}.$
- На промежутке $\displaystyle \left [0;\frac{\pi}{3}\right ]$ фигура ограничена отрезком луча $\displaystyle \varphi=\frac{\pi}{3}$ и дугой окружности $r=\sin\varphi .$
Площадь в полярных координатах
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Площадь в полярных координатах».