Определение частной производной и её геометрический смысл

Определение. Пусть функция $$ f \left( x \right) = f \left( x_1, \dots, x_n \right) $$ определена в окрестности точки $ x^0 = \left( x_2^0, \dots, x_n^0 \right) $. Рассмотрим функцию одной переменной $$ \varphi \left( x_1 \right) = f \left( x_1, x_2^0, \dots, x_n^0 \right). $$ Функция $ \varphi \left( x_1 \right) $ может иметь производную в точке $ x_1^0 $. По определению такая производная называется частной производной $ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) $. Таким образом, $$ \frac{ \partial f }{ \partial x_1 } \left( x^0 \right) = \frac{ \partial f }{ \partial x_1 } \left( x_1^0, \dots, x_n^0 \right) = \\ = \lim\limits_{\Delta x_1 \to 0 } \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) }{ \Delta x_1 }, $$ где $ \Delta x_1 = x_1 — x_1^0 $.
Аналогично определяются частные производные (первого порядка) $$ \frac{ \partial f }{ \partial x_i } \left( x_1^0, \dots, x_n^0 \right) , i = \overline{2, n}. $$ Употребляются и другие обозначения для частных производных первого порядка: $$ \frac{ \partial f }{ \partial x_i } \left( x^0 \right) = f_{x_i} \left( x^0 \right) = D_i f \left( x^0 \right) = \\ = {f’}_{x_i} \left( x^0 \right) = \frac{ \partial }{ \partial x_i } f \left( x^0 \right) = \frac{ \partial f \left( x^0 \right) }{ \partial x_i }. $$ Функция двух переменных может иметь в точке $ \left( x^0, y^0 \right) $ две частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0 \right). $$ Для функции трех переменных — три частные производные первого порядка $$ \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial y } \left( x^0, y^0, z^0 \right), \frac{ \partial f }{ \partial z } \left( x^0, y^0, z^0 \right). $$ Поскольку при вычслении частных производных все переменные, кроме одной, фиксируются, то техника вычисления частных производных такая же, как техника вычисления производных функции одной переменной.
Например, $$ \frac{ \partial }{ \partial x } \sqrt{x^2 + y^2} = \frac{ 1 }{ 2 \sqrt{x^2 + y^2} } \frac{ \partial }{ \partial x } \left( x^2 + y^2 \right) = \frac{ x }{ \sqrt{x^2 + y^2} }. $$

Геометрический смысл

kolomeiets20160630Рассмотрим функцию двух переменных $ z = f \left( x, y \right) $, определенную на множестве $ D \subset \mathbb{R}^2 $ и имеющую конечные частные производные $ \frac{ \partial z }{ \partial x } $ и $ \frac{ \partial z }{ \partial y } $ в точке $ M_0 \left( x_0, y_0 \right) $. Чтобы выяснить геометрический смысл частных производных, выполним следующие построения. В плоскости $ Oxy $ отметим точку $ M_0 $.
Затем нарисуем поверхность $ S $, являющуюся графиком функции $ z = f \left( x, y \right) $. Без ограничения общности будем полагать, что поверхность расположена над плоскостью $ Oxy $. Через точку $ M_0 $ проведем плоскость $ y = y_0 $ параллельную коорднатной плоскости $ Oxy $. В сечении поверхности $ S $ этой плоскостью получаем кривую $ \Gamma $. Уравнение этой кривой описывается функцией одной переменной $ z = f \left( x, y_0 \right) $. Так как в точке $ M_0 $ существует частная производная $ {f’}_x \left( x_0, y_0 \right) $, то она согласно геометрическому смыслу обычной производной функции одной переменной равна угловому коэффициенту касательной, проведенной в точке $ N \left( x_0, y_0, f \left( x_0, y_0 \right) \right) $ к кривой $ \Gamma $: $$ {f’}_x \left( x_0, y_0 \right) = \tan \alpha, $$ где $ \alpha $ — угол между касательной и положительным направлением оси $ Ox $. В этом состоит геометрический смысл частной производной $ {f’}_x \left( x_0, y_0 \right) $.

Список литературы

Тест

Тест для проверки усвоения материала

Определение частной производной и её геометрический смысл: 1 комментарий

  1. Основные замечания уже высказал в комментарии к другой Вашей работе.
    По рисунку:
    — Нужно изменить стиль текста так, чтобы выглядело точно также, как и в остальных формулах страницы. Скорее всего, достаточно будет сделать его наклонным, но возможно придется ещё и указать другой шрифт.
    — В вопросах где нужно вводить ответ формулы отображаются некорректно. Павел заметил, что если использовать тег абзаца, то формулы появляются. Попробуйте, но если этот хак не сработает придется для этих видов заданий придумывать вопросы без формул.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *