Дифференцируемые функции и дифференциал

Определение: Если функция [latex]f[/latex] определена в окрестности точки [latex]x_{0}[/latex] и [latex]f(x)-f(x_{0}) =[/latex][latex] A\Delta x + \Delta x\alpha(\Delta x)[/latex], где [latex]\lim\limits_{\Delta x \to 0} \alpha(\Delta x) = 0[/latex], а [latex]A[/latex] — некоторая константа, то функцию [latex]f[/latex] называют дифференцируемой в точке [latex]x_{0}[/latex] и [latex]A\Delta x = df(x_{0})[/latex] называется дифференциалом функции [latex]f[/latex] в точке [latex]x_{0}[/latex].

Определение: Если функция [latex]y = f(x)[/latex] дифференцируема в любой точке [latex]x_{0} \in (a, b)[/latex], то функция [latex]y[/latex] называется дифференцируемой на промежутке [latex](a, b)[/latex].

Замечание: Если [latex]y = f(x)[/latex] — дифференцируема на промежутке [latex](a, b)[/latex] и [latex]\exists {f}_{+}'(a) = \lim\limits_{x \to a+0} \frac{\Delta y}{x-a}[/latex] и [latex]\exists {f}_{-}'(b) = \lim\limits_{x \to b-0} \frac{\Delta y}{x-b}[/latex], то функция [latex]y[/latex] называется дифференцируемой на отрезке [latex][a, b][/latex].

Критерий дифференцируемости функции

Формулировка:

Функция [latex]f[/latex] дифференцируема в точке [latex]x_{0}[/latex] тогда и только тогда, когда она имеет производную в точке [latex]x_{0}.[/latex]

Доказательство:

Необходимость:
[latex]f(x) — [/latex]дифференцируема в точке [latex]x_{0} \Rightarrow \exists A:[/latex][latex]\Delta f(x) = A\Delta x+\Delta x \alpha(\Delta x)[/latex], где [latex]\lim\limits_{\Delta x \to 0} \alpha(\Delta x)= 0 \Rightarrow \lim\limits_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}=[/latex] [latex]\lim\limits_{\Delta x \to 0} \frac{A\Delta x +\Delta x\alpha(\Delta x)}{\Delta x} =[/latex] [latex] \lim\limits_{\Delta x \to 0} A + \alpha(\Delta x) =[/latex] [latex] A\Rightarrow \exists {f}'(x_{0}) = A \Rightarrow dy =[/latex] [latex] {f}'(x_{0})\Delta x.[/latex]

Достаточность:
[latex]\exists {f}'(x_{0}) = \lim\limits_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}\Rightarrow [/latex] [latex]\lim\limits_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} — {f}'(x_{0}) =[/latex] [latex] \alpha (\Delta x)[/latex], где [latex]\lim\limits_{\Delta x \to 0} \alpha (\Delta x) = 0[/latex] [latex]\Rightarrow \Delta f(x) = {f}'(x_{0})\Delta x + \alpha (\Delta x)\Delta x[/latex], а это и означает, что функция [latex]f(x)[/latex] — дифференцируема в точке [latex]x_{0}[/latex].

Тест:

Тест на проверку усвоения связи между производной и дифференциалом.


Таблица лучших: Дифференциал и дифференцируемость

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список литературы:

  1. В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу в двух частях (Часть 1, стр. 107-108.).
  2. Лысенко З. М. Конспект лекций по математическому анализу.

Односторонние и бесконечные производные

Понятия односторонних и бесконечных производных вводятся аналогично понятиям односторонних и бесконечных пределов.

Определение: Если функция [latex]y = f(x)[/latex], непрерывна слева в точке [latex]x_{0}[/latex], то есть [latex]\lim\limits_{x \to x_{0} — 0} f(x) = f(x_{0})[/latex] и [latex]\exists \lim\limits_{\Delta x \to -0} \frac{\Delta y}{\Delta x}[/latex], то этот предел называют левой производной функции [latex]y[/latex] в точке [latex]x_{0}[/latex].
Левая производна кратко записывается [latex]{f_{-}}'(x_{0})[/latex].

Определение: Если функция [latex]y = f(x)[/latex], непрерывна справа в точке [latex]x_{0}[/latex], то есть [latex]\lim\limits_{x \to x_{0} + 0} f(x) = f(x_{0})[/latex] и [latex]\exists \lim\limits_{\Delta x \to +0} \frac{\Delta y}{\Delta x}[/latex], то этот предел называют правой производной функции [latex]y[/latex] в точке [latex]x_{0}[/latex].
Правая производна кратко записывается [latex]{f_{+}}'(x_{0})[/latex].

Определение: Прямая проходящая через точку [latex](x_{0}, f(x_{0}))[/latex], с угловым коэффициентом [latex]{f_{-}}'(x_{0})[/latex], называется левой касательной к графику функции [latex]y[/latex] в точке [latex](x_{0}, f(x_{0}))[/latex].

Определение: Прямая проходящая через точку [latex](x_{0}, f(x_{0}))[/latex], с угловым коэффициентом [latex]{f_{+}}'(x_{0})[/latex], называется правой касательной к графику функции [latex]y[/latex] в точке [latex](x_{0}, f(x_{0}))[/latex].

Определение: Если функция [latex]y=f(x)[/latex], непрерывна в точке [latex]x_{0}[/latex] и [latex]\exists \lim\limits_{\Delta x \to 0} = \pm \infty[/latex], тогда производная [latex]{f}'(x_{0})[/latex] называется бесконечной производной.

Замечание: Геометрическое истолкование производной как углового коэффициента касательной распространяется и на случай бесконечной производной; но здесь — касательная оказывается параллельной оси [latex]Oy[/latex]. В случаях a и b эта производная равна, соответственно, [latex]+\infty[/latex] и [latex]-\infty[/latex] (обе односторонние производные совпадают по знаку); в случаях c и d односторонние производные разнятся знаком.
svg

Тест:

Односторонние и бесконечные производные.

Тест проверки усвоения информации об односторонних и бесконечных производных.


Таблица лучших: Односторонние и бесконечные производные.

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список литературы:

  • Курс лекций по математическому анализу в двух частях Часть 1. В.И.Коляда, А.А.Кореновский стр. 110-111.
  • Лекции Зои Михайловны Лысенко.

Таблица основных интегралов

Таблица основных интегралов
Интеграл Значение
$\int dx$ $x+C$
$\int a^xdx$ $\frac{a^x}{\ln{a}}+C$
$\int e^xdx$ $e^x+C$
$\int x^adx$ $\frac{x^{a+1}}{a+1}+C$
$\int \frac{dx}{x}$ $\ln|{x}|+C$
$\int \frac{dx}{2\sqrt{x}}$ $\sqrt{x}+C$
$\int \cos xdx$ $ \sin x+C$
$\int \sin xdx$ $ -\cos x+C$
$\int \mathop{\rm sh} xdx$ $ \mathop{\rm ch} x+C$
$ \int\mathop{\rm ch} xdx$ $\mathop{\rm sh} x+C$
$\int \frac{dx}{\sin^2x}$ $ \mathop{\rm -ctg} x + C $
$\int \frac{dx}{\mathop{\rm ch}^2x}$ $ \mathop{\rm th} x+ C$
$\int \frac{dx}{\cos^2x}$ $ \mathop{\rm tg}x +C$
$\int \frac{dx}{a^2+x^2}$ $\frac{1}{a} \mathop{\rm arctg}\frac{x}{a}+C$
$\int \frac{dx}{\mathop{\rm sh}^2x}$ $\mathop{\rm -cth}x+C$
$\int \frac{dx}{\sqrt{x^2\pm a^2}}$ $\ln|x+\sqrt{x^2\pm a^2}|+C$
$\int \frac{dx}{\sqrt{a^2-x^2}}$ $\arcsin \frac{x}{a}+C$
$\int \frac{dx}{a^2-x^2}$ $\frac{1}{2a}\ln|\frac{a+x}{a-x}|+C$
$\int \frac{dx}{x^2-a^2}$ $\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C$

Решите примеры:

  1. $\int (2x-3)dx$
    Спойлер

    $x^2-3x+C$

    [свернуть]
  2. $\int \cos^2xdx$ 
    Спойлер

    $\frac{1}{2}(x+\frac{1}{2}\sin2x)+C$

    [свернуть]
  3. $\int (2x-3)^2dx$
    Спойлер

    $\frac{4}{3}x^3-6x^2+9x+C$

    [свернуть]

Литература

  1. Кудрявцев Л.Д., Курс Математического Анализа. — М.: Дрофа; 2003, Т.1. Стр. 459
  2. Лысенко З.М., Конспект лекций по математическому анализу, 2012

Тест

Для решения интегралов нужно знать таблицу первообразных (таблицу интегралов) и свойства интегралов. Попробуйте проверить свои знания.


Таблица лучших: Таблица основных интегралов

максимум из 22 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Таблица эквивалентных

Таблица эквивалентных

Отношения бесконечно малых можно упрощать, отбрасывая бесконечно малые слагаемые большего порядка и заменяя множители в числителе и знаменателе на эквивалентные им бесконечно малые.  Чтобы этот способ вычисления пределов (точнее, раскрытия неопределённостей вида [latex][\frac{0}{0}][/latex]) можно было применять к большему числу примеров, мы должны иметь достаточно большой запас известных пар эквивалентных величин. Создадим такой запас для базы[latex]x\rightarrow 0[/latex]  в виде таблицы «стандартных» эквивалентных бесконечно малых.

Поскольку в этой таблице мы всегда будем рассматривать базу [latex]x\rightarrow 0[/latex], для простоты записи  будем писать знак [latex]\sim[/latex] вместо [latex]_{x\rightarrow 0}^{\sim}\textrm{}[/latex].

[latex]sinx \sim x [/latex] [latex]e^{x}-1\sim x [/latex]
[latex]tgx\sim x[/latex] [latex]a^{x}-1\sim xlna[/latex]
[latex]arcsinx\sim x[/latex] [latex]ln(1+x)\sim x[/latex]
[latex]arctgx\sim x[/latex] [latex](1+x)^{\alpha }-1\sim \alpha x[/latex]
[latex]shx\sim x[/latex] [latex]1-cosx\sim \frac{x^{2}}{2}[/latex]

Докажем некоторые утверждения:

1)    [latex]lim_{x\rightarrow 0}\frac{arcsinx}{x}=[/latex][latex]lim_{x\rightarrow 0}\frac{1}{\frac{x}{arcsinx}}=[/latex][latex]lim_{y\rightarrow 0}\frac{1}{\frac{siny}{y}} =1[/latex]

2)  [latex]lim_{x\rightarrow 0}\frac{tgx}{x}=[/latex][latex]lim_{x\rightarrow 0}\frac{sinx}{\frac{x}{cosx}}[/latex][latex]=\frac{lim_{x\rightarrow 0}\frac{sinx}{x}}{lim_{x\rightarrow 0}cosx}=[/latex][latex]\frac{1}{1}=1[/latex]

3)  [latex]lim_{x\rightarrow 0}\frac{1-cosx}{x^{2}/2}=[/latex][latex]lim_{x\rightarrow 0}\frac{2sin^{2}\frac{x}{2}}{x^{2}/2}=[/latex][latex]lim_{x\rightarrow 0}\frac{2sin^{2}\frac{x}{2}}{2(\frac{x}{2})^{2}}=[/latex][latex]lim_{x\rightarrow 0}\frac{sin\frac{x}{2}}{\frac{x}{2}}\cdot \frac{sin\frac{x}{2}}{\frac{x}{2}}=[/latex][latex]lim_{x\rightarrow 0}\frac{sin\frac{x}{2}}{\frac{x}{2}}\cdot lim_{x\rightarrow 0}\frac{sin\frac{x}{2}}{\frac{x}{2}}=[/latex][latex]1\cdot 1=1[/latex]

4) [latex]lim_{x\rightarrow 0}\frac{log_{a}(1+x)}{\frac{x}{lna}}=[/latex][latex]lim_{x\rightarrow 0}ln\; a\cdot \frac{1}{x}log_{a}(1+x)=[/latex][latex]lim_{x\rightarrow 0}ln\; a\cdot log_{a}(1+x)^{\frac{1}{x}}=[/latex][latex]lim_{x\rightarrow 0}ln\; a\cdot \frac{ln(1+x)^{\frac{1}{x}}}{lna}=[/latex][latex]lim_{x\rightarrow 0}ln(1+x)^{\frac{1}{x}}=[/latex][latex]ln\; lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=[/latex][latex]ln\; e=1[/latex]

Источники:

  • Лысенко З.М. Конспект лекций по курсу математического анализа. (Тема «Сравнение функций»).

Тест по теме «Эквивалентные функции»

Свойства функций непрерывных в точке

  • Если функция $latex f$ непрерывна в точке $latex a$, то она ограниченна в некоторой окрестности этой точки :
    $latex \exists c>0 $  $latex \exists U_\delta(a) : $
    $latex \forall x \in {U_\delta(a)} : |f(x)| < c $
    Следует из свойств пределов.
  • Если функция $latex f$ непрерывна в точке $latex a$ и $latex f(a)\neq $ 0, то в некоторой окрестности точки $latex a$ знак функции совпадает со знаком числа $latex f(a)$:
    $latex \exists U_\delta(a) : \forall x \in {U_\delta(a)} \rightarrow sign f(x)=sign f(a) $
    Следует из свойств пределов.
  • Если $latex f$ и $latex g$ непрерывны в точке $latex a$, то функции :
    $latex f \pm g , f*g , \frac{f}{g} $ непрерывны в точке $latex a$.
    Следует из непрерывности и свойств пределов.
  • Если $latex z=f(y)$ непрерывна в точке $latex y$, а $latex y=\varphi(x) $ , непрерывна в точке $latex x_0 $ причем $latex y_0=\varphi(x_0) $ , то в некоторой окрестности $latex x_0 $ определена сложная функция равная $latex f[\varphi(x)] $ которая также непрерывна в точке $latex x_0 $:
    $latex \left.\begin{matrix}\lim\limits_{y\to y_0}f(y)=f(y_0)
    \\ \lim\limits_{x\to x_0}\varphi(x)=\varphi(x_0)\end{matrix}\right\} \Rightarrow \lim\limits_{x\to x_0}f[\varphi(x)]=f[\varphi(x_0)] $
    Композиция непрерывных функций также является непрерывной.

Литература:

функции непрерывные в точке

Тест на тему «функции непрерывные в точке»: