Если функции [latex]f\left( x \right)[/latex] и [latex]g\left(x\right)[/latex] непрерывны на отрезке [latex][a,b][/latex], дифференцируемы на интервале (a,b), причем [latex]g'(x)\neq 0[/latex] во всех точках этого интервала, то найдется хотя бы одна точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].
Доказательство
Рассмотрим функцию [latex]\varphi(x)=f(x)+\lambda g(x)[/latex], где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось равенство [latex]\varphi (a)=\varphi (b)[/latex], которое равносильно следующему:
[latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex].
Заметим, что [latex]g(b)\neq g(a)[/latex], так как в противном случае согласно Теореме Ролля существовала бы точка [latex]c\in (a,b)[/latex] такая, что $latex g'(c)=0$ вопреки условиям данной теоремы. Из равенства [latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex] следует, что [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex].
Так как функция [latex]\varphi [/latex] при любом [latex]\lambda[/latex] непрерывна на отрезке $latex [a,b]$ и дифференцируема на интервале [latex](a,b)[/latex], а при значении [latex]\lambda[/latex], определяемом предыдущей формулой, принимает равные значения в точках $latex a$ и $latex b$, то по теореме Ролля существует точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\varphi ‘(\xi )=0[/latex], т.е. [latex]f'(\xi )+\lambda g'(\xi )=0[/latex], откуда [latex]\frac{f'(\xi )}{g'(\xi )}=-\lambda[/latex]. Из этого равенства и формулы [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex] следует [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].
Замечание. Теорема Лагранжа — частный случай теоремы Коши [latex](g(x)=x)[/latex].
Замечание. Теорему Коши нельзя получить используя теорему Лагранжа отдельно к числителю и к знаменателю.
Теорема Коши (обобщенная формула конечных приращений)
Лимит времени: 0
Навигация (только номера заданий)
0 из 3 заданий окончено
Вопросы:
1
2
3
Информация
Правильно ли вы поняли обобщенную теорему Лагранжа?
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 3
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Математический анализ0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
С ответом
С отметкой о просмотре
Задание 1 из 3
1.
Чьим именем названа теорема, являющаяся частным случаем данной?
Правильно
Неправильно
Задание 2 из 3
2.
Допишите недостающее условие теоремы Коши: [latex]f[/latex] и [latex]g[/latex] непрерывны на [latex]\left[a,b\right][/latex], [latex]g'(x)\neq 0[/latex] и
Правильно
Неправильно
Задание 3 из 3
3.
Вставьте слово
Теорему Коши (нельзя) получить используя теорему Лагранжа отдельно к числителю и знаменателю
Правильно
Неправильно
Литература
Конспект лекций Лысенко З.М.
Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр.157-158
Метод нахождения пределов функций, раскрывающий неопределённости вида $latex \frac{0}{0} $ или $latex \frac{\infty}{\infty} $ Правило позволяет заменить предел отношения функций пределом отношения их производных.
1. Докажем теорему для случая, когда пределы функций равны нулю.
Существует $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} &s=1$
Вывод: Тогда существует $latex \lim\limits_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow a} \frac{f'(x)}{g'(x)} &s=1$
Доказательство: Доопределим функции в точке $latex a $ нулём. Из 1 условия следует, что $latex f(x) $ и $latex g(x) $ непрерывны на отрезке $latex [a,x] $, где $latex x $ принадлежит рассматриваемой окрестности точки $latex a $. Применим обобщённую формулу конечных приращений (Коши) к $latex f(x) $ и $latex g(x) $ на отрезке $latex [a,x] $ $latex \exists \xi\in [a,x]:\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}&s=1 $ Так как $latex f(a)=g(a)=0 $ получим, что $latex \forall x $ $latex \exists \xi \in [a,x]:\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Пусть предел отношения производных равен $latex A $. Следовательно: $latex \lim\limits_{x \to a} \frac{f'(\xi(x))}{g'(\xi(x))}=\lim\limits_{y \to a} \frac{f'(y)}{g'(y)}=A &s=1$, так как $latex \lim\limits_{x \to a} \xi(x)=a &s=1$
2. Докажем теорему для случая, когда пределы функций равны бесконечности.
Условия:
$latex f(x) $ и $latex g(x) $ дифференцируемы при $latex x>a $
Существует конечный $latex \lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)}=A &s=1$
Вывод: Тогда существует $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$ Доказательство: Из условия 2 следует, что $latex \exists a_{1}>a:\forall x>a_{1} \to |f(x)|>1,|g(x)|>1 $, и поэтому $latex f(x)\neq 0,g(x)\neq0 $ при $latex x>a_{1} $. По определению предела (условие 4) для заданного числа $latex \varepsilon >0 $ можно найти $latex \delta_{1}=\delta_{1}(\varepsilon)\geq a_{1} $ такое, что для всех $latex t>\delta_{1} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f'(t)}{g'(t)}<A+\frac{\varepsilon}{2} &s=1$ Фиксируя $latex x_{0}>\delta_{1} $ выберем, пользуясь условием 2 число $latex \delta_{2}>x_{0} $
такое, чтобы при всех $latex x>\delta_{2} $ выполнялись неравенства: $latex \left |\frac{f(x_{0})}{f(x)}<\frac{1}{2}\right | &s=1$ и $latex \left |\frac{g(x_{0})}{g(x)}<\frac{1}{2}\right | &s=1$ Для доказательства теоремы нужно доказать, что существует такое $latex \delta $, что при всех $latex x>\delta $ выполняется неравенство: $latex A-\varepsilon<\frac{f(x)}{g(x)}<A+\varepsilon (*) &s=1$ Число $latex \delta $ будет выбрано ниже. Считая, что $latex x>\delta $, применим к функциям $latex f $ и $latex g $ на отрезке $latex [x;x_{0}] $ обобщённую формулу конечных приращений (Коши). $latex \exists \xi \in [x_{0};x]: \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Преобразуем левую часть неравенства: $latex \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f(x)}{g(x)}(\varphi(x))^{-1} &s=1$, где $latex \varphi(x)=\frac{1-\frac{g(x_{0})}{g(x)}}{1-\frac{f(x_{0})}{f(x)}}=1+\beta(x) &s=1$ Заметим, что $latex \beta(x)\to0 $ при $latex x\to+\infty $ в силу условия 2, поэтому $latex \forall \varepsilon>0 \exists \delta\geq\delta_{2}: $ $latex \forall x>\delta\to|\beta(x)|<\frac{\frac{\varepsilon}{2}}{|A|+ \frac{\varepsilon}{2}}(**) &s=1$ Так как $latex \xi>x_{0}>\delta_{1} $, то для всех $latex x>\delta_{2} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f(x)}{g(x)} (\varphi(x))^{-1}<A+\frac{\varepsilon}{2} &s=1$ Если $latex x>\delta $, то $latex \varphi(x)>0 $, и поэтому неравенство равносильно следующему: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))< $ $latex \frac{f(x)}{g(x)}<(A+\frac{\varepsilon}{2})(1+\beta(x)) &s=1$ Используя неравенство $latex (**) $, получаем: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))=$ $latex A-\frac{\varepsilon}{2}+(A-\frac{\varepsilon}{2})\beta(x) \geq $ $latex (A-\frac{\varepsilon}{2})-&s=1-(|A|+\frac{\varepsilon}{2})|\beta(x)|> $ $latex A-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=A-\varepsilon &s=1$ Аналогично находим: $latex (A+\frac{\varepsilon}{2})(1+\beta(x))\leq $ $latex A+\frac{\varepsilon}{2}+(|A|+\frac{\varepsilon}{2})|\beta(x)|< A+\varepsilon &s=1$
Таким образом для всех $latex x>\delta $ выполняется неравенство $latex (*) $, а это означает, что справедливо утверждение: $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$
Примеры:
Пример 1. Найти $latex \lim\limits_{x \to 1}\frac{3x^{10}-2x^{5}-1}{x^{3}-4x^{2}+3} &s=1$ Обозначим $latex f(x)=3x^{10}-2x^{5}-1 $ , $latex g(x)=x^{3}-4x^{2}+3 $. Так как $latex \lim\limits_{x\to1}f(x)=\lim\limits_{x\to1}g(x)=0 $, воспользуемся правилом Лопиталя для ситуации $latex \frac{0}{0} $. $latex f'(x)=30x^{9}-10x^{4} $, $latex f'(1)=20 $ $latex g'(x)=3x^{2}-8x $, $latex g'(1)=-5 $ По доказанной теореме: $latex \lim\limits_{x\to1}\frac{f(x)}{g(x)}=\lim\limits_{x\to1}\frac{f'(x)}{g(x’)}=\frac{20}{-5}=-4 &s=1$
Ответ: -4.
Пример 2. Доказать, что [latex] \lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=0,\alpha>0 [/latex]
Применяя правило Лопиталя для ситуации $latex \frac{\infty}{\infty} $, получим: [latex]\lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=[/latex][latex]\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{\alpha x^{\alpha-1}}=[/latex][latex] \lim\limits_{x\to\infty}\frac{1}{\alpha x^{\alpha}}=0[/latex]
Доказано.
Источники:
Конспект по курсу математического анализа Лысенко З.М.
Существует $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} $
Правильно
Неправильно
Задание 4 из 10
4.
Какая теорема применяется при доказательстве раскрытия неопределённости вида $latex \frac{0}{0} $?
Правильно
Неправильно
Задание 5 из 10
5.
В процессе доказательства теоремы для раскрытия неопределённости вида $latex \frac{0}{0} $ $latex \xi $ рассматривается нами как…
Правильно
Неправильно
Задание 6 из 10
6.
В доказательстве теоремы для случая $latex \frac{\infty}{\infty}$ утверждение , что $latex \exists a_{1} > a : \forall x>a_{1} \to |f(x)|>1 , |g(x)|>1 $ следует из условия о…
Правильно
Неправильно
Задание 7 из 10
7.
Правило Лопиталя позволяет заменить предел отношения функций …
Если функции $latex z=f(y)$ и $latex y=\varphi(x)$ дифференцируемы соответственно в точках $latex y_0$ и $latex x_0$, где $latex y_0=\varphi(x_0)$, то $latex z=f(\varphi(x))$ — дифференцируема в точке $latex x_0$, причём $latex z'(x_0)=f'(y_0)\cdot \varphi'(x_0)=f'(\varphi(x_0)) \cdot \varphi'(x_0)$.
Доказательство
Т.к. функции $latex f$ и $latex \varphi$ непрерывны, то $latex z(x)=f(\varphi(x))$ — непрерывны в точке $latex x_0 \Rightarrow z$ определена в $latex u_\delta (x_0)$
Интегрирование функций вида $latex R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}})&s=2$
Интегралы типа $latex \int R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}}),$
где a, b, c, d — действительные числа, $latex r_{k}\in \mathbb{Q}(k=\overline{1,n})$, сводятся к интегралам от рациональной функции путем подстановки
$latex \frac {ax+b}{cx+d}=t^{p},$
где p — наименьшее общее кратное знаменателей чисел $latex r_{1},r_{2},…r_{n}.$
Действительно, из подстановки $latex \frac{ax+b}{cx+d}=t^{p}$ следует, что $latex x=\frac{b-dt^{p}}{ct^{p}-a}$ и $latex dx=-\frac {dpt^{p-1}(ct^{p}-a)-(b-dt^{p})cpt^{p-1}}{(ct^{p}-a)^{2}}dt$, т.е. x и dx выражаются через рациональные функции от t. При этом и каждая степень дроби $latex \frac{ax+b}{cx+d}$ выражается через рациональную функцию от t.
2) Найти интеграл $latex I=\int\frac{dx}{\sqrt[3]{(x+2)^{2}}-\sqrt{x+2}}.$ Наименьшее общее кратное знаменателей дробей $latex \frac{2}{3}$ и $latex \frac{1}{2}$ есть 6. Сделав замену
Символами Ландау являются «О» большое и «о» малое ([latex]O[/latex] и [latex]o[/latex]).
Определение:
Пусть $latex f(x)$ и $latex g(x)$ — две функции, определенные в некоторой проколотой окрестности точки $latex x_0$, причем в этой окрестности $latex g$ не обращается в ноль. Говорят, что:
$latex f$ является «О» большим от $latex g$ при $latex x\to x_0$ и пишут $latex f=\underset{x\to x_0}{O(g)}$, если существует такая константа $latex C>0$, что для всех $latex x$ из некоторой окрестности точки $latex x_0$ имеет место неравенство $latex |f(x)| \leq C |g(x)|$;
$latex f$ является «о» маленьким от $latex g$ при $latex x\to x_0$ и пишут $latex f=\underset{x\to x_0}{o(g)}$, если для любого $latex \varepsilon >0$ найдется такая проколотая окрестность $latex U’_{x_0}$ точки $latex x_0$, что для всех $latex x \in U’_{x_0}$ имеет место неравенство $latex |f(x)|<\varepsilon|g(x)|$.
Иначе говоря, в первом случае отношение $latex |f|/|g|$ в окрестности точки $latex x_0$ ограничено сверху, а во втором оно стремится к нулю при $latex x\to x_0$, то есть функция $latex f$ является бесконечно малой в сравнении с $latex g$.
Примеры:
$latex x^2=\underset{x\to 0}{o(x)}$, т.к. $latex \lim\limits_{x\to 0}\frac{x^2}{x}=\lim\limits_{x\to 0}x=0;$
$latex \sin^2 x=\underset{x\to x_0}{O(x)}, x_0 \epsilon \mathbb{R}$, т.к. $latex \lim\limits_{x\to\infty}\frac{\frac{1}{x}}{x}=\lim\limits_{x\to\infty}\frac{1}{x^2}=0;$
$latex -x^3={O(x)}$, т.к. $latex \lim\limits_{x\to 0}\frac{-x^3}{x}=\lim\limits_{x\to 0}-x^2; $ а функция $latex -x^2$ ограничена сверху в окрестности точки 0.
$latex \sin^2 x={O(x)}, x_0 \epsilon \mathbb{R}$, т.к. $latex \lim\limits_{x\to x_0}\frac{\sin^2 x}{x}=\lim\limits_{x\to x_0}\sin x;$ а функция $latex \sin x$ всегда ограничена сверху единицей.
Свойства «О» большого и «о» маленького
Для функций $latex f=f(x),\:g=g(x)$ и $latex x \epsilon \mathbb{R}$ справедливы равенства:
$latex o(f)+o(f)=o(f);$
$latex o(f)$ тем более есть $latex O(f);$
$latex o(f)+O(f)=O(f);$
$latex O(f)+O(f)=O(f);$
$latex \frac{o(f(x))}{g(x)}=o(\frac{f(x)}{g(x)})$ и $latex \frac{O(f(x))}{g(x)}=O(\frac{f(x)}{g(x)}),$ если $latex g\neq 0;$