Теорема Коши (обобщенная формула конечных приращений)

Формулировка

Если функции [latex]f\left( x \right)[/latex] и [latex]g\left(x\right)[/latex] непрерывны на отрезке [latex][a,b][/latex], дифференцируемы на интервале (a,b), причем [latex]g'(x)\neq 0[/latex] во всех точках этого интервала, то найдется хотя бы одна точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

Доказательство

Рассмотрим функцию [latex]\varphi(x)=f(x)+\lambda g(x)[/latex], где число [latex]\lambda[/latex] выберем таким, чтобы выполнялось равенство [latex]\varphi (a)=\varphi (b)[/latex], которое равносильно следующему:
[latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex].

Заметим, что [latex]g(b)\neq g(a)[/latex], так как в противном случае согласно Теореме Ролля существовала бы точка [latex]c\in (a,b)[/latex] такая, что $latex g'(c)=0$ вопреки условиям данной теоремы. Из равенства [latex]f(b)-f(a)+\lambda (g(b)-g(a))=0[/latex] следует, что [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex].

Так как функция [latex]\varphi [/latex] при любом [latex]\lambda[/latex] непрерывна на отрезке $latex [a,b]$ и дифференцируема на интервале [latex](a,b)[/latex], а при значении [latex]\lambda[/latex], определяемом предыдущей формулой, принимает равные значения в точках $latex a$ и $latex b$, то по теореме Ролля существует точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\varphi ‘(\xi )=0[/latex], т.е. [latex]f'(\xi )+\lambda g'(\xi )=0[/latex], откуда [latex]\frac{f'(\xi )}{g'(\xi )}=-\lambda[/latex]. Из этого равенства и формулы [latex]\lambda =-\frac{f(b)-f(a)}{g(b)-g(a)}[/latex] следует [latex]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/latex].

  1. Замечание. Теорема Лагранжа — частный случай теоремы Коши [latex](g(x)=x)[/latex].
  2. Замечание. Теорему Коши нельзя получить используя теорему Лагранжа отдельно к числителю и к знаменателю.

Теорема Коши (обобщенная формула конечных приращений)

Правильно ли вы поняли обобщенную теорему Лагранжа?

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр.157-158

Правило Лопиталя о раскрытии неоднозначностей

Метод нахождения пределов функций, раскрывающий неопределённости вида $latex \frac{0}{0} $ или $latex \frac{\infty}{\infty} $ Правило позволяет заменить предел отношения функций пределом отношения их производных.

1. Докажем теорему для случая, когда пределы функций равны нулю.

Условия:

  1. $latex f(x) &s=1$ и $latex g(x) &s=1$ дифференцируемы в проколотой окрестности точки $latex a $
  2. $latex \lim\limits_{x\to a}f(x)=\lim\limits_{x\to a}g(x)=0 &s=1$
  3.  $latex g'(x) \neq 0 &s=1$ в проколотой окрестности точки $latex a $
  4. Существует  $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} &s=1$

Вывод: Тогда существует  $latex \lim\limits_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow a} \frac{f'(x)}{g'(x)} &s=1$

Доказательство: Доопределим функции в точке $latex a $ нулём. Из 1 условия следует, что $latex f(x) $ и  $latex g(x) $ непрерывны на отрезке $latex [a,x] $, где $latex x $ принадлежит рассматриваемой окрестности точки $latex a $. Применим обобщённую формулу конечных приращений (Коши) к $latex f(x) $ и  $latex g(x) $ на отрезке $latex [a,x] $ $latex \exists \xi\in [a,x]:\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}&s=1 $ Так как $latex f(a)=g(a)=0 $  получим, что $latex \forall x $ $latex \exists \xi \in [a,x]:\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Пусть предел отношения производных равен $latex A $. Следовательно: $latex \lim\limits_{x \to a} \frac{f'(\xi(x))}{g'(\xi(x))}=\lim\limits_{y \to a} \frac{f'(y)}{g'(y)}=A &s=1$, так как $latex \lim\limits_{x \to a} \xi(x)=a &s=1$

2. Докажем теорему для случая, когда пределы функций равны бесконечности.

Условия:

  1. $latex f(x) $ и $latex g(x) $ дифференцируемы при $latex x>a $
  2. $latex \lim\limits_{x\to\infty}f(x)=\lim\limits_{x\to\infty}g(x)=\infty &s=1$
  3. $latex g'(x)\neq 0 $ при $latex x>a $
  4. Существует конечный $latex \lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)}=A &s=1$

Вывод: Тогда существует $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$ Доказательство: Из условия 2 следует, что $latex \exists a_{1}>a:\forall x>a_{1} \to |f(x)|>1,|g(x)|>1 $, и поэтому $latex f(x)\neq 0,g(x)\neq0 $ при $latex x>a_{1} $. По определению предела (условие 4) для заданного числа $latex \varepsilon >0 $ можно найти $latex \delta_{1}=\delta_{1}(\varepsilon)\geq a_{1} $ такое, что для всех $latex t>\delta_{1} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f'(t)}{g'(t)}<A+\frac{\varepsilon}{2} &s=1$ Фиксируя $latex x_{0}>\delta_{1} $ выберем, пользуясь условием 2 число $latex \delta_{2}>x_{0} $

Расположение всех выбираемых нами точек на прямой

такое, чтобы при всех $latex x>\delta_{2} $ выполнялись неравенства: $latex \left |\frac{f(x_{0})}{f(x)}<\frac{1}{2}\right | &s=1$  и  $latex \left |\frac{g(x_{0})}{g(x)}<\frac{1}{2}\right | &s=1$ Для доказательства теоремы нужно доказать, что существует такое $latex \delta $, что при всех $latex x>\delta $ выполняется неравенство: $latex A-\varepsilon<\frac{f(x)}{g(x)}<A+\varepsilon (*) &s=1$ Число $latex \delta $ будет выбрано ниже. Считая, что $latex x>\delta $, применим к функциям $latex f $ и $latex g $ на отрезке $latex [x;x_{0}] $  обобщённую формулу конечных приращений (Коши). $latex \exists \xi \in [x_{0};x]: \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Преобразуем левую часть неравенства: $latex \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f(x)}{g(x)}(\varphi(x))^{-1} &s=1$, где $latex \varphi(x)=\frac{1-\frac{g(x_{0})}{g(x)}}{1-\frac{f(x_{0})}{f(x)}}=1+\beta(x) &s=1$ Заметим, что $latex \beta(x)\to0 $ при $latex x\to+\infty $ в силу условия 2, поэтому $latex \forall \varepsilon>0 \exists \delta\geq\delta_{2}: $ $latex \forall x>\delta\to|\beta(x)|<\frac{\frac{\varepsilon}{2}}{|A|+ \frac{\varepsilon}{2}}(**) &s=1$ Так как  $latex \xi>x_{0}>\delta_{1} $, то для всех $latex x>\delta_{2} $  выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f(x)}{g(x)} (\varphi(x))^{-1}<A+\frac{\varepsilon}{2} &s=1$ Если $latex x>\delta $, то $latex \varphi(x)>0 $, и поэтому неравенство равносильно следующему: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))< $ $latex \frac{f(x)}{g(x)}<(A+\frac{\varepsilon}{2})(1+\beta(x)) &s=1$ Используя неравенство $latex (**) $, получаем: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))=$ $latex A-\frac{\varepsilon}{2}+(A-\frac{\varepsilon}{2})\beta(x) \geq $ $latex (A-\frac{\varepsilon}{2})-&s=1-(|A|+\frac{\varepsilon}{2})|\beta(x)|> $ $latex A-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=A-\varepsilon &s=1$ Аналогично находим: $latex (A+\frac{\varepsilon}{2})(1+\beta(x))\leq $ $latex A+\frac{\varepsilon}{2}+(|A|+\frac{\varepsilon}{2})|\beta(x)|< A+\varepsilon &s=1$

Таким образом для всех $latex x>\delta $ выполняется  неравенство $latex (*) $, а это означает, что справедливо утверждение: $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$

Примеры:

Пример 1. Найти $latex \lim\limits_{x \to 1}\frac{3x^{10}-2x^{5}-1}{x^{3}-4x^{2}+3} &s=1$ Обозначим $latex f(x)=3x^{10}-2x^{5}-1 $ , $latex g(x)=x^{3}-4x^{2}+3 $. Так как  $latex \lim\limits_{x\to1}f(x)=\lim\limits_{x\to1}g(x)=0 $, воспользуемся правилом Лопиталя для ситуации $latex \frac{0}{0} $. $latex f'(x)=30x^{9}-10x^{4} $, $latex f'(1)=20 $ $latex g'(x)=3x^{2}-8x $, $latex g'(1)=-5 $ По доказанной теореме: $latex \lim\limits_{x\to1}\frac{f(x)}{g(x)}=\lim\limits_{x\to1}\frac{f'(x)}{g(x’)}=\frac{20}{-5}=-4 &s=1$

Ответ: -4.

Пример 2. Доказать, что [latex] \lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=0,\alpha>0 [/latex]

Применяя правило Лопиталя для ситуации $latex \frac{\infty}{\infty} $, получим: [latex]\lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=[/latex][latex]\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{\alpha x^{\alpha-1}}=[/latex][latex] \lim\limits_{x\to\infty}\frac{1}{\alpha x^{\alpha}}=0[/latex]

Доказано.

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §19 с. 172-175

Тест на знание правила Лопиталя

Пройдите короткий тест для закрепления материала.

Дифференцируемость сложной функции

Теорема (о дифференцировании сложной функции)

Если функции $latex z=f(y)$ и $latex y=\varphi(x)$ дифференцируемы соответственно в точках $latex y_0$ и $latex x_0$, где $latex y_0=\varphi(x_0)$, то $latex z=f(\varphi(x))$ — дифференцируема в точке $latex x_0$, причём $latex z'(x_0)=f'(y_0)\cdot \varphi'(x_0)=f'(\varphi(x_0)) \cdot \varphi'(x_0)$.

Доказательство

Т.к. функции $latex f$ и $latex \varphi$ непрерывны, то $latex z(x)=f(\varphi(x))$ — непрерывны в точке $latex x_0 \Rightarrow z$ определена в $latex u_\delta (x_0)$

$latex |\Delta x|<\delta$

$latex \Delta y=\varphi(x_0+\Delta x) — \varphi(x_0)$
$latex \Delta z=z(x_0+\Delta x)-z(x_0)$

$latex \Delta z=f(y)=f(\varphi(x))$
$latex \Delta z=f'(y_0) \cdot \Delta y + \Delta y \cdot \alpha (\Delta y)$, где $latex \lim\limits_{\Delta y \to 0} \alpha (\Delta y)=0$
$latex \frac{\Delta z}{\Delta x} = \lim\limits_{\Delta x \to 0} \frac{f'(y_0) \Delta y + \Delta y \cdot \alpha (\Delta y)}{\Delta x}=&s=2$
$latex =\lim\limits_{\Delta x \to 0}(f'(y_0)\cdot \underset{\underset{\varphi'(x_0)}{\downarrow}}{\underbrace{\frac{\Delta y}{\Delta x}}} + \underset{\underset{0}{\downarrow}}{\underbrace{\frac{\Delta y}{\Delta x} \cdot \alpha (\Delta x)}})=f'(y_0) \cdot \varphi'(x_0) &s=2$
Теорема доказана.

Читать далее «Дифференцируемость сложной функции»

Интегрирование дробно-линейных иррациональностей

Интегрирование функций вида $latex R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}})&s=2$

Интегралы типа $latex \int R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}}),$
где a, b, c, d — действительные числа, $latex r_{k}\in \mathbb{Q}(k=\overline{1,n})$, сводятся к интегралам от рациональной функции путем подстановки

$latex \frac {ax+b}{cx+d}=t^{p},$

где p — наименьшее общее кратное знаменателей чисел $latex r_{1},r_{2},…r_{n}.$
Действительно, из подстановки $latex \frac{ax+b}{cx+d}=t^{p}$ следует, что $latex x=\frac{b-dt^{p}}{ct^{p}-a}$ и $latex dx=-\frac {dpt^{p-1}(ct^{p}-a)-(b-dt^{p})cpt^{p-1}}{(ct^{p}-a)^{2}}dt$, т.е. x и dx выражаются через рациональные функции от t. При этом и каждая степень дроби $latex \frac{ax+b}{cx+d}$ выражается через рациональную функцию от t.

Примеры

1)Найти $latex I=\int\frac{\sqrt{x+1}+2}{(x+1)^{2}-\sqrt{x+1}}dx$. Сделав подстановку

$latex t=\sqrt{x+1};dx=2tdt$

будем иметь

$latex I=2\int\frac{t+2}{t^{3}-1}dt=\int(\frac{2}{t-1}-\frac{2t+2}{t^{2}+t+1})dt=2\int\frac{dt}{t-1}-\int\frac{2t+1}{t^{2}+t+1}dt-\int\frac{dt}{(t+1\frac{1}{2})^{2}+\frac{3}{4}}=$
$latex =ln\frac{(t-1)^{2}}{t^{2}+t+1}-\frac{2}{\sqrt{3}}arctg\frac{2t+1}{\sqrt{3}}+C.$

2) Найти интеграл $latex I=\int\frac{dx}{\sqrt[3]{(x+2)^{2}}-\sqrt{x+2}}.$ Наименьшее общее кратное знаменателей дробей $latex \frac{2}{3}$ и $latex \frac{1}{2}$ есть 6. Сделав замену

$latex t=\sqrt[6]{x+2};dx=6t^{5}dt$

будем иметь

$latex I=\int\frac{6t^{5}dt}{t^{4}-t^{3}}=6\int\frac{t^{2}dt}{t-1}=6\int\frac{(t^{2}-1)+1}{t-1}dt=6\int(t+1+\frac{1}{t-1})dt=3t^{2}+6t+$
$latex +6ln\left|t-1\right|+C=3\sqrt[3]{x+2}+6\sqrt[6]{x+2}+6ln\left|\sqrt[6]{x+2}-1\right|+C.$

Литература

  • Лысенко З.М. Конспект лекций по математическому анализу, семестр 1, О.:2012
  • www.znannya.org_Интегрирование иррациональных функций
  • Вартанян Г.М. Конспект лекций по математическому анализу, часть 1(3), О.:2009, стр.60
  • Символ Ландау

    Символами Ландау являются «О» большое и «о» малое ([latex]O[/latex] и [latex]o[/latex]).

    Определение:

    Пусть $latex f(x)$ и $latex g(x)$ — две функции, определенные в некоторой проколотой окрестности точки $latex x_0$, причем в этой окрестности $latex g$ не обращается в ноль. Говорят, что:

    • $latex f$ является «О» большим от $latex g$ при $latex x\to x_0$ и пишут $latex f=\underset{x\to x_0}{O(g)}$, если существует такая константа $latex C>0$, что для всех $latex x$ из некоторой окрестности точки $latex x_0$ имеет место неравенство $latex |f(x)| \leq C |g(x)|$;
    • $latex f$ является «о» маленьким от $latex g$ при $latex x\to x_0$ и пишут $latex f=\underset{x\to x_0}{o(g)}$, если для любого $latex \varepsilon >0$ найдется такая проколотая окрестность $latex U’_{x_0}$ точки $latex x_0$, что для всех $latex x \in U’_{x_0}$ имеет место неравенство $latex |f(x)|<\varepsilon|g(x)|$.

    Иначе говоря, в первом случае отношение $latex |f|/|g|$ в окрестности точки $latex x_0$ ограничено сверху, а во втором оно стремится к нулю при $latex x\to x_0$, то есть функция $latex f$ является бесконечно малой в сравнении с $latex g$.

    Примеры:

    $latex x^2=\underset{x\to 0}{o(x)}$, т.к. $latex \lim\limits_{x\to 0}\frac{x^2}{x}=\lim\limits_{x\to 0}x=0;$
    $latex \sin^2 x=\underset{x\to x_0}{O(x)}, x_0 \epsilon \mathbb{R}$, т.к. $latex \lim\limits_{x\to\infty}\frac{\frac{1}{x}}{x}=\lim\limits_{x\to\infty}\frac{1}{x^2}=0;$
    $latex -x^3={O(x)}$, т.к. $latex \lim\limits_{x\to 0}\frac{-x^3}{x}=\lim\limits_{x\to 0}-x^2; $ а функция $latex -x^2$ ограничена сверху в окрестности точки 0.
    $latex \sin^2 x={O(x)}, x_0 \epsilon \mathbb{R}$, т.к. $latex \lim\limits_{x\to x_0}\frac{\sin^2 x}{x}=\lim\limits_{x\to x_0}\sin x;$ а функция $latex \sin x$ всегда ограничена сверху единицей.

    Свойства «О» большого и «о» маленького

    Для функций $latex f=f(x),\:g=g(x)$ и $latex x \epsilon \mathbb{R}$ справедливы равенства:

    1. $latex o(f)+o(f)=o(f);$
    2. $latex o(f)$ тем более есть $latex O(f);$
    3. $latex o(f)+O(f)=O(f);$
    4. $latex O(f)+O(f)=O(f);$
    5. $latex \frac{o(f(x))}{g(x)}=o(\frac{f(x)}{g(x)})$ и $latex \frac{O(f(x))}{g(x)}=O(\frac{f(x)}{g(x)}),$ если $latex g\neq 0;$ 
    6. $latex o(o(f))=o(f);$
    7. $latex o(Cf)=o(f);$
    8. $latex C\cdot o(f)=o(f);$
    9. $latex o(f+o(f))=o(f);$
    10. $latex o(f)\pm o(f)=o(f);$
    11. $latex o(f^n)\cdot o(f^m)=o(f^{n+m}), n,m\epsilon\mathbb{N};$
    12. $latex (o(f))^n=o(f^n), n \epsilon\mathbb{N}$ .

    Примеры:

    $latex \underset {x\to 0}{o(x^2)+o(x^2)}=\underset{x\to 0}{o(x^2)}$
    $latex \underset {x\to 0}{o(2x^5)}=\underset{x\to 0}{o(x^5)}$
    $latex \underset {x\to 0}{o(x^2)\cdot o(x^3)}=\underset{x\to 0}{o(x^5)}$.

    Символ Ландау

    Тест по теме «Символ Ландау»

    Источники:

    1. Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Непрерывные функции»).
    2. Википедия, статья «О большое и о малое»
    3. Кытманов А.А., Математический анализ, параграф 1.15.

    Рекомендуемая к прочтению литература: