$latex \square$Не ограничивая общности рассуждений рассмотрим случай $latex g(x)\geqslant 0$ на $latex [a,b]$.
Домножив все части неравенства $latex m\leqslant f(x)\leqslant M$ на $latex g(x)$, получим
$latex m\, g(x)\leqslant f(x)g(x)\leqslant M g(x)$.
Если $latex \int_{a}^{b}g(x)dx=0$, то и $latex \int_{a}^{b}f(x)g(x)dx=0$, тогда $latex \mu$ — любое из отрезка $latex [a,b]$. Пусть, далее, $latex \int_{a}^{b}g(x)dx \neq 0$. Разделим все части неравенства на $latex \int_{a}^{b}g(x)dx>0$, будем иметь
Получили, что $latex \mu \in [a,b]$ и $latex \int_{a}^{b}f(x)g(x)dx=\mu\int_{a}^{b}g(x)dx$. Случай $latex g(x)\leqslant0$ доказывается аналогично.$latex \blacksquare$
[свернуть]
Следствие
Если $latex f(x)$ непрерывна на $latex [a,b]$, $latex g \in R[a,b]$ и не меняет знак на $latex [a,b]$, то $latex \exists\;c\in [a,b]:\int_{a}^{b}f(x)g(x)dx=f(c)\int_{a}^{b}g(x)dx$. В частности, если $latex g(x)=1$, то
Подынтегральную функцию представим в виде произведения: $latex \frac{x^{9}}{\sqrt{1+x}}=g(x)f(x)$, где $latex g(x)=x^{9}, f(x)=\frac{1}{\sqrt{1+x}}, x\in[0,1]$. Очевидно, что
Отсюда, по теореме о среднем получим $latex I=\int_{0}^{1}\frac{x^{9}dx}{\sqrt{1+x}}=c\int_{0}^{1}x^{9}dx=\frac{c}{10}$, причем $latex \frac{1}{\sqrt{2}}\leqslant c\leqslant 1$, по этому $latex \frac{1}{10\sqrt{2}}\leqslant I\leqslant \frac{1}{10}$.
[свернуть]
Литература
З.М. Лысенко. Конспект лекций по математическому анализу, 1 семестр.: О. 2012
Б.П. Демидович и др. Задачи и упражнения по математическому анализу. Издание девятое. Стр. 196-198: М. Наука. — 1977, 528 стр.
В.А. Ильин, Э.Г. Позняк. Основы математического анализа. Часть 1. Издание четвертое. Стр. 336-341: М. Наука. — 1982, 616 стр.
Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления. Том 2. Издание седьмое. Стр. 113-115: М. Наука. — 1969, 800 стр.
Экстремумом функции называется максимальное (минимальное) значение функции на заданном множестве. Точка, в которой достигается экстремум называется точкой экстремума.
Точка $latex x_{0}$ называется точкой локального максимума функции $latex f(x)$, если выполняется условие: [latex] \exists U_{\delta }(x_{0}) :[/latex][latex] \forall x\in U_{\delta }(x_{0}) f(x_{0})\geq[/latex][latex] f(x).[/latex]
Аналогично точка $latex x_{0}$ называется точкой локального минимума функции $latex f(x)$ , если выполняется условие: [latex] \exists U_{\delta }(x_{0}):[/latex][latex]\forall x\in U_{\delta}(x_{0}) f(x_{0})\leq [/latex][latex]f(x).[/latex]
Точки, в которых производная равна нулю, называются стационарными точками. Точки, в которых функция непрерывна, а её производная либо равна нулю, либо не существует, называются критическими точками.
Теорема (необходимое условие экстремума)
Если точка $latex x_{0}$ — точка экстремума функции $latex f(x)$, то она критическая.
Доказательство
По условию точка $latex x_{0}$ — точка экстремума функции $latex f(x)$ $latex \Rightarrow $ по теореме Ферма производная $latex {f}'(x_{0})=0$ $latex \Rightarrow $ точка $latex x_{0}$ является критической.
Пример:
Найти экстремум функции $latex f(x)=x^{3}-$ $latex 6x^{2}+9x-4$.
Найдем производную этой функции:$latex {f}’=3x^{2}-12x+9$ $latex \Rightarrow $ критические точки задаются уравнением $latex 3x^{2}-12x+9 =0$. Корни этого уравнения $latex x_{1}=3$ и $latex x_{2}=1$.
Как видно по рисунку функция имеет максимум в точке 1, а минимум в точке 3.
Подставим эти значения чтобы убедиться в исходную функцию: $latex f(3)=27-$ $latex 54+27-4=-4$ и $latex f(1)=1-6+9-4=0$ $latex \Rightarrow $ в точке $latex x_{1}=3$ функция имеет минимум, равный -4, а в точке $latex x_{2}=1$ функция имеет максимум, равный 0.
Замечания:
Не всякая критическая точка является точкой экстремума.
Пример:
Рассмотрим функцию $latex f(x)=x^{3}$. Построим график этой функции:
Производная данной функции в точке $latex x_{0}=0$ $latex {f}'(0)=0$ $latex \Rightarrow$ $latex x_{0}$ по определению является критической точкой, однако в этой точке функция не имеет экстремума.
Теорема (первое достаточное условие экстремума в терминах первой производной)
Пусть функция $latex f(x)$ определена и дифференцируема в некоторой окрестности точки $latex x_{0}$, кроме, быть может, самой точки $latex x_{0}$ и непрерывна в этой точке. Тогда:
Если производная $latex {f}’$ меняет знак с «-» на «+» при переходе через точку $latex x_{0}$: $latex \forall x\in $ $latex (x_{0}-\delta ;x_{0}) {f}'(x)<$ $latex 0$ и $latex \forall x\in $ $latex (x_{0}; x_{0}+\delta) {f}'(x)> $ $latex 0$, то $latex x_{0}$ — точка строго минимума функции $latex f(x).$
Если производная $latex {f}’$ меняет знак с «+» на «-» при переходе через точку $latex x_{0}$: $latex \forall x\in $ $latex (x_{0}-\delta;x_{0} ){f}'(x)>$ $latex 0$ и $latex \forall x\in $ $latex (x_{0}; x_{0}+\delta) {f}'(x)< $ $latex 0$, то $latex x_{0}$ — точка строго максимума функции $latex f(x).$
Доказательство
Пусть, например, $latex {f}’$ меняет знак с «-» на «+». Рассмотрим точку $latex x_{0}$ на сегменте $latex \left [ x;x_{0} \right ].$ Воспользуемся теоремой о конечных приращениях Лагранжа: $latex f(x)-f(x_{0})$ $latex ={f}'(\xi)(x-x_{0})$, $latex \xi \in (x;x_{0})$. Поскольку при переходе через точку $latex x_{0}$ функция меняет знак с «-» на «+», то $latex {f}'(\xi)<0$ и $latex x< x_{0}$, то $latex x- x_{0}<0$ $latex f(x)-f(x_{0})>0.$
Аналогично рассмотрим сегмент $latex \left [ x_{0};x \right ]$, получим
$latex f(x)-f(x_{0})>0$ $latex \Rightarrow$ $latex f(x_{0})< f(x)$ $latex \Rightarrow$ $latex x_{0}$ — точка строгого минимума функции.
Замечания:
Если $latex x_{0}$ — точка строго экстремума, то из этого не следует, что производная $latex {f}’ (x) $ меняет знак при переходе через точку $latex x_{0}.$
Теорема (второе достаточное условие строгого экстремума в терминах второй производной)
Пусть дана функция $latex f(x)$, она определена в некоторой окрестности точки $latex x_{0} $, ее первая производная $latex {f}'(x_{0})=0$ и пусть $latex \exists {f}»(x_{0})$, тогда:
Если $latex {f}»(x_{0})>0$, то точка $latex x_{0}$ — точка строгого минимума;
Если $latex {f}»(x_{0})<0$, то точка $latex x_{0}$ — точка строгого максимума.
Доказательство
Докажем теорему для первого случая, когда $latex {f}»(x_{0})>0$. По скольку $latex {f}»(x_{0})$ непрерывна, то на достаточно малом интервале $latex (x_{0}-\delta ;x_{0}+\delta)$, т.к $latex {f}»(x_{0})>0$, то $latex {f}'(x_{0})$ возрастает в этом интервале. $latex {f}'(x_{0})=0$, значит $latex {f}'(x_{0})<0$ на интервале $latex (x_{0}-\delta ;x_{0})$ и $latex {f}'(x_{0})>0$ на интервале $latex (x_{0} ;x_{0}+\delta)$.
Таким образом функция $latex f(x)$ убывает на интервале $latex (x_{0}-\delta ;x_{0})$ и возрастает на интервале $latex (x_{0} ;x_{0}+\delta)$ $latex \Rightarrow$ по первому достаточному условию экстремума функция в точке $latex x_{0}$ имеет минимум.
Аналогично доказывается второй случай теоремы.
Замечания:
Если $latex {f}'(x)=0$ и $latex {f}»(x)=0$, то функция $latex f(x)$ может и не иметь экстремум в точке $latex x_{0}.$
Теорема (третье достаточное условие строгого экстремума в терминах производных порядка больше двух)
Пусть функция $latex f(x) $ определена в некоторой окрестности точки $latex x_{0} $, и в этой точке существуют производные до n-го порядка пусть $latex \exists f^{(n)}(x_{0})$, $latex n> 2$ и [latex] {f}'(x_{0})={f}»(x_{0})=…[/latex][latex]=f^{(n-1)}(x_{0})=0[/latex], [latex] f^{(n)}(x_{0})\neq 0.[/latex] Тогда:
Если $latex n=2k$ (т.е $latex n$ — четное), то $latex x_{0}$ — точка экстремума:
если $latex f^{(n)}(x_{0})<0$, то $latex x_{0}$ — точка локального максимума;
если $latex f^{(n)}(x_{0})>0$, то $latex x_{0}$ — точка локального минимума;
Если $latex n=2k+1$ (т.е $latex n$ — нечетное), то $latex x_{0}$ — не является точкой экстремума.
Доказательство
Воспользуемся формулой Тейлора в окрестности точки $latex x_{0}$ с остатком в форме Пеано: $latex f(x)=f(x_{0})+ $ $latex \frac{{f}'(x_{0})}{1!}(x-x_{0})+… +$ $latex \frac{f^{(n-1)}(x_{0})}{(n-1)!}(x-x_{0})^{n-1}+$ $latex \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+$ $latex o((x-x_{0})^{n}), x\rightarrow x_{0}$.
По скольку все производные до $latex (n-1) $ порядка включительно равны нулю получим: [latex] f(x)-f(x_{0})=[/latex][latex]\frac{f^{n}(x_{0})}{n!}(x-x_{0})^{n}+[/latex][latex]o((x-x_{0})^{n}), x\rightarrow x_{0}.[/latex] Запишем полученное выражение в виде: [latex] f(x)-f(x_{0})=[/latex][latex]\frac{f(n)(x_{0})}{n!}(x-[/latex][latex]x_{0})\left [ 1+\frac{o((x-x_{0})^{n})}{(x-x_{0})^{n}} \right ][/latex]. Выражение $latex [1+\frac{o((x-x_{0})^{n})}{(x-x_{0})^{n})}]>1$. Пусть $latex n=2k$ $latex \Rightarrow$ $latex (x-x_{0}) ^{n}> 0$, [latex] \text{sign}(f(x)-f(x_{0}))=[/latex] [latex] \text{sign} (\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n})[/latex]. Отсюда следует, что сохранение или изменение знака приращения функции во время перехода через точку $latex x_{0}$ зависит от четности $latex n$. Последний факт и доказывает теорему.
Список литературы:
В.А.Ильин, Э. Г. Позняк «Основы математического анализа» (часть 1) 4-е издание, 1982, стр. 295;
Лысенко З. М. Конспект по математическому анализу.
Вартанян Г. М. Конспект по математическому анализу.
где a и b — любые константы, а показатели степеней m, n и p — рациональные числа. Изучим вопрос об интегрируемости в элементарных функциях дифференциальных биномов.
Рассмотрим три случая , когда интеграл от дифференциального бинома допускает рационализирующую подстановку.
1. Первый случай соответствует целому p. Дифференциальный бином представляет собой дробно-линейную иррациональность вида [latex] R (x,\sqrt[r]{x}) dx [/latex], где r — наименьшее общее кратное знаменателей рациональных чисел m и n. Стало быть, интеграл от дифференциального бинома в этом случае рационализируется подстановкой [latex] t=\sqrt[r]{x} [/latex].
2.Второму случаю соответствует целое число [latex] \frac{m+1}{n} [/latex]. Сделаем подстановку
[latex] z = x^{n} [/latex] и положим для краткости [latex] \frac{m+1}{n}-1=q [/latex], получим
Подынтегральная функция в правой части является дробно-линейной иррациональностью следующего вида вида [latex] R (z,\sqrt[s]{a+bz}) [/latex], где s — знаменатель рационального числа p.
Таким образом, для второго случая дифференциальный бином рационализируется подстановкой
3. Третьему случаю соответствует целому число [latex] (\frac{m+1}{n}+p) [/latex]. Подынтегральная функция в правой части является дробно-линиейной иррациональностью вида [latex] R (z,\sqrt[s]{\frac{a+bz}{z}}) [/latex], так что интеграл от дифференциального бинома рационализируется подстановкой вида
В середине 19-го века П.Л.Чебышев доказал, что указанными выше тремя случаями исчерпываются все случаи, когда дифференциальный бином интегрируется в элементарных функциях. (Мемуар 1853 года «Об интегрировании иррациональных дифференциалов»).
Примеры
1)Вычислить интеграл [latex] I=\int \frac{ \sqrt{x}dx}{ (1+\sqrt[3]{x})^{2}} = \int x^{\frac {1} {2}} (1+x^{\frac{1}{3}})^{-2} [/latex]. Здесь [latex] m=\frac{1}{2}, n=\frac{1}{3}, p=-2 [/latex]. Так как p — целое, значит используем подстановку из первого случая
2) Вычислить интеграл [latex] I = \int \frac{x}{\sqrt{1+\sqrt[3]{x^{2}}}} dx[/latex]. Здесь [latex] m = 1, n = \frac{2}{3}, p = -\frac{1}{2}[/latex]. Так как [latex]\frac{m+1}{n} = 3[/latex] — целое (второй случай).
3) Вычислить интеграл [latex] I=\int x^{5} (1-x^{2})^{-\frac{1}{2}} dx [/latex]. Графиком подынтегральной функции будет:
В данном случае [latex] m=5,n=2,p=-\frac{1}{2} [/latex], так что [latex] \frac{m+1}{n}=3 [/latex] (второй случай). Сделав подстановку
Какую из следующих рационализирующих подстановок следует выбрать для интеграла $latex \int\frac{dx}{\sqrt[3]{x^{2}(1+\sqrt[3]{x^{2}})}}=\int x^{-\frac{2}{3}}(1+x^{\frac{2}{3}})^{-1}dx$
Если последовательность является возрастающей и ограниченной сверху, то: $latex \lim\limits_{x \to \infty} x_n = \sup {x_n}$.
Аналогично для убывающей и ограниченной снизу последовательности: $latex \lim\limits_{x \to \infty} x_n = \inf {x_n}$.
Доказательство:
Докажем теорему для монотонной возрастающей последовательности $latex \left\{x_n\right\}$. Докажем, что точная верхняя граница $latex a = \sup{x_n}$ для последовательности и будет ее пределом.
Действительно, по определению точной верхней границы: $latex \forall n$ $latex x_n \leq a$.
Кроме того, какое бы ни взять число $latex \varepsilon > 0$, найдется такой номер $latex N$, что $latex x_n > a — \varepsilon$.
Так как последовательность монотонна, то при $latex n > N$: $latex x_n \geq x_n$, а значит, и $latex x_n > a — \varepsilon$ и выполняются неравенства: $latex 0\leq a — x_n < \varepsilon \vee \left | x_n — a \right | <\varepsilon$ откуда и следует, что $latex \lim\limits_{n \to \infty} x_n = a$. $latex \blacksquare$
Пример. Доказать, что последовательность $latex x_n = \frac{1}{n}$ сходится.
Доказательство. Рассматриваемая последовательность ограничена снизу, так как для любого натурального $latex n$: $latex x_n = \frac{1}{n} > 0$.
Исследуем заданную последовательность на монотонность:
Теорема Вейерштрасса о пределе монотонной ограниченной последовательностиутверждает, что любая (ограниченная) возрастающая ((убывающая)) последовательность имеет предел, причем этот предел равен ее точной (верхней) ((нижней)) (грани).