M648. О диагоналях вписанного четырехугольника

Задача из журнала «Квант» (1980 год, 10 выпуск)

Условие

Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенный из точки пересечения его диагоналей на стороны, лежат на одной окружности.

Решение

Прежде всего заметим, что если $ABCD$ — вписанный четырехугольник с перпендикулярными диагоналями (рис. 1), то подобные треугольники $AKB$ и $CKD$ ($K$ — точка пересечения диагоналей) расположены таким образом, что продолжение высоты, опущенной на гипотенузу одного из них, является медианой другого. (Этот факт, немедленно вытекающий из равенства отмеченных на рисунке 1 углов, по существу уже использовался в решении задач M546 и M592 — см. «Квант», 1980, № 1, 8.)

Рисунок 1

Далее: середины $L$, $P$, $M$, $Q$ сторон четырехугольника $ABCD$, являясь вершинами прямоугольника (рис. 2), лежат на одной окружности. Покажем, что центр $O$ этой окружности делит пополам отрезок $OK$ ($O$ — центр окружности, в которую вписан наш четырехугольник).

Рисунок 2

Для этого достаточно, например, показать, что четырехугольник $LKMO$ — параллелограмм. Поскольку $LK$ — медиана треугольника $AKB$, ее продолжение является высотой треугольника $CKD$, то есть $LK \perp DC$. Но и $OM \perp DC$ (диаметр, проходящий через середину хорды), поэтому отрезки $LK$ и $OM$ параллельны. Аналогично доказывается параллельность отрезков $LO$ и $KM$.

Теперь для окончания решения задачи нам достаточно установить, например, что $|O_1M| = |O_1H|$, где $H$ — основание перпендикуляра, опущенного из точки $K$ на сторону $CD$. Но это следует из того, что $O_1$ — середина гипотенузы $LM$ прямоугольного треугольника $LMH$ (рис. 3).

Рисунок 3

Итак, все восемь точек, упомянутых в условиях задачи, лежат на одной окружности. Интересно, что радиус этой «окружности восьми точек» целиком определяется радиусом $R$ данной окружности и величиной $|OK| = a$. В самом деле, искомый радиус равен половине длины $|LM|$, а $$|LM|^2 = |LP|^2 + |PM|^2 = $$ $$= \frac{1}{4}\left(|AC|^2 + |BD|^2\right) =$$ $$= \frac{1}{4}\left(|AK| + |KC|\right)^2 + \left(|BK| + |KD|)^2\right) =$$ $$= \frac{1}{4}\left(|AB|^2 + |CD|^2 + 2\left(|AK| \cdot |KC| + |BK| \cdot |KD|\right)\right) =$$ $$= \frac{1}{4}\left(|AB|^2 + |CD|^2 + 4\left(R^2 — a^2\right)\right) =$$ $$= \frac{1}{4}\left(4R^2 + 4\left(R^2 — a^2\right)\right) = 2R^2 — a^2.$$

(В этой вкладке мы вначале воспользовались тем, что произведение длин отрезков хорд, пересекающихся в одной и той же точке, постоянно: $$|AK| \cdot |KC| = |BK| \cdot |KD| = (R — a)(R + a)$$ (рис. 4),

Рисунок 4

а затем, сообразив, что $$90^{\circ} = \widehat{BCA} + \widehat{DBC} = \frac{\overset{\smile}{AB} + \overset{\smile}{CD}}{2}$$ и дополнив $\overset{\smile}{CD}$ до полуокружности дугой конгруэнтной $\overset{\smile}{AB}$ получили равенство $$|AB|^2 + |CD|^2 = (2R)^2 = 4R^2$$ см. рисунок 5)

Рисунок 5

Наметим другое решение. Сделаем гомотетию наших восьми точек с центром в точке $K$ и коэффициентом $2$. Тогда утверждение задачи М648 превращается в такую теорему:

Пусть два взаимно перпендикулярных луча с накалом в точке $K$ внутри данной окружности, вращаясь вокруг $K$, пересекают окружность в переменных точках $P$ и $Q$. Тогда четвертая вершина $T$ прямоугольника $PKQT$ (точка симметричная точке $K$ относительно середины $|PQ|$), а также точка $S$, симметричная точке $K$ относительно прямой $PQ$, двигаются по окружности концентричной с данной (рис. 6).

Второй факт (про $S$) следует из первого, так как $S$ симметрична точке $T$ относительно серединного перпендикуляра к $|PQ|$, а первый (про $T$) установлен в решении задачи М539 («Квант», 1979, № 11)

Рисунок 6

Эта «теорема о восьми точках» допускает следующее стереометрическое обобщение:

Если три взаимно перпендикулярных луча с началом в фиксированной точке $K$ внутри данной сферы, вращаясь вокруг $K$, пересекают сферу в переменных точках $A$, $B$ и $C$, то точка пересечения медиан треугольника $ABC$ и основание перпендикуляра, опущенного из $K$ на плоскость $ABC$, двигаются по сфере, центр которой находится в точке $O_1$ отрезка $OK$ ($O$ — центр данной сферы) такой, что $|O_1K| = \frac{1}{3}|OK|,$ а радиус равен $\frac{1}{3}\sqrt{3R^2 — 2a^2}$, где $a = |OK|,$ $R$ — радиус данной сферы.

Доказать это можно, например, следующим образом.

Пусть $D$ — вершина параллелепипеда, определенного отрезками $KA$, $KB$ и $KC$, диагонально противоположная к $K$. Все точки $D$ лежат на сфере с центром в той же точке $O$, что у исходной сферы, и радиусом $\sqrt{3R^2 — 2a^2}$ (см. решение задачи М639 — «Квант», 1969, № 11). При гомотетии с центром $K$ и коэффициентом $\frac{1}{3}$ точка $D$ будет все время переходить в точку пересечения медиан треугольника $ABC$ (докажите!), а точка $O$ перейдет в точку $O_1$. Таким образом, точка пересечения медиан треугольника $ABC$ все время лежит на указанной сфере.

Осталось показать, что проекция точки $K$ на плоскость треугольника $ABC$ также все время лежит на этой сфере. Поскольку отрезки $KA$, $KB$ и $KC$ взаимно перпендикулярны, проекция точки $K$ совпадет с точкой $H$ пересечения высот треугольника $ABC$. Утверждение будет доказано, если мы, например, получим равенство $|O_1H| = |O_1M|$, где $M$ — точка пересечения медиан треугольника $ABC$. Для этого заметим, что центр сферы $O$ проектируется в центр $Q$ описанной вокруг треугольника $ABC$ окружности, и воспользуемся таким известным фактом: точки $Q$, $M$ и $H$ лежат на одной прямой (прямой Эйлера), точка $M$ — между точками $Q$ и $H$, причем $2|QM| = |MH|$. (Если этот факт вам неизвестен, докажите его.) Остальное легко следует из рисунка 7: поскольку $|O_1K| = \frac{1}{3}|OK|$, а $|QM| = \frac{1}{3}|QH|$, точка $O_1$ проектируется в середину отрезка $MH$, то есть $O_1$ равноудалена от $M$ и $H$.

Рисунок 7
И. Шарыгин

М671. Задача о вписанном четырёхугольнике


Задача из журнала «Квант» М671(1981, выпуск №3)

Задача:

Во вписанном четырёхугольнике одна диагональ делит вторую пополам. Докажите, что квадрат длины первой диагонали равен половине суммы квадратов длин всех сторон четырёхугольника.

Решение:

Пусть $a, b, c, d$ — длины сторон четырёхугольника $ABCD$, $|BO| = |OD|, |AC| = l$ (см. рисунок). По теореме косинусов

\begin{equation}
l^2 = a^2 + b^2 — 2ab\cdot \cos\hat{B}
\end{equation}
\begin{equation}
l^2 = c^2 + d^2 + 2cd\cdot \cos\hat{B}
\end{equation}

($\hat{D} = 180^\circ — \hat{B}$, поскольку четырёхугольник $ABCD$ вписан в окружность).

Легко заметить, что треугольники $ABC$ и $ADC$ равновелики: $S_{ABC} = S_{ADC}$ — они имеют общее основание $AC$ и равные по длине высоты, опущеные на это основание. Поэтому $\frac{1}{2}ab\cdot \sin\hat{B} = \frac{1}{2}cd\cdot \sin(180^\circ — \hat{B})$, то есть $ab = cd$. Складывая $(1)$ и $(2)$, получаем требуемое.

М641. Задача о шестиугольнике и пересекающем его круг.

Задача из журнала «Квант» М641(1980, выпуск №9)

Задача:

Дан правильный шестиугольник $ABCDEF$ с центром $O$. Точки $M$ и $N$ — середины сторон  $CD$ и $DE$. Прямые  $AM$ и $BN$ пересекаются в точке $L$.

Докажите, что:

а) треугольник $ABL$ и четырехугольник $DMLN$ имеют равные площади;

б) $\widehat{ALO}=\widehat{OLN}=60^\circ$;

в) $\widehat{OLD}=90^\circ$.

Решение:

Все утверждения задачи не трудно получить из одного наблюдения: при повороте на $60^\circ$ вокруг центра $O$ четырехугольник $AMCB$ отображается на четырехугольник $BNDC$.

Действительно, при повороте $R_O^{60^\circ}$ (против часовой стрелки) точка $A$ переходит в точку $B$, точка $B$ — в точку $C$, сторона $CD$ отображается в сторону $DE$, так что середина $M$ стороны $CD$ переходит в середину $N$ стороны $DE$ (смотри рисунок). Следовательно, четырехугольники $AMCB$ и $BNDC$ конгруэнтны, так что площади их равны. Вычитая из этих равных площадей площадь четырехугольника $BCML$, получим равные площади, то есть треугольник $ABL$ и четырехугольник $DMLN$ равновелики.

Так как при повороте $R_O^{60^\circ}$ луч $AM$ отображается на луч $BN$, угол между направлениями этих лучей равен углу поворота, то есть $\widehat{ALB}=60^\circ$. Следовательно, $\widehat{ALN}=120^\circ$.Приведем два доказательства того , что $\widehat{ALO}=\widehat{OLN}=60^\circ$ и $\widehat{OLD}=90^\circ$.

$1^\circ$. Воспользуемся таким очевидным фактом: если две прямые, пересекающиеся в точке $K$, равноудалены от точки $P$, то прямая $PK$ служит биссектрисой угла между этими прямыми (содержащего точку $P$). Поскольку точка $O$ равноудалена от прямых $AM$ и $BN$, $OL$ — биссектриса угла $ALN$, то есть $\widehat{ALO}=\widehat{OLN}=60^\circ$. Поскольку точка $D$ удалена от прямых $AM$ и $BN$ одинаково (на такое же расстояние, как $C$ — от прямой $AM$). $\widehat{NLD}=\widehat{DLM}=30^\circ$, то есть $\widehat{OLD}=90^\circ$.

$2^\circ$. Около четырехугольника $DMON$ можно описать окружность, так как углы  при его вершинах $M$ и $N$ — прямые. Тогда $L$ также принадлежит этой окружности. Это следует из того, что в четырехугольнике $DMLN$ сумма углов при вершинах $D$ и $L$ равна $180^\circ$. Заметив, что $\widehat{ODN}=60^\circ$, применим теорему о вписанном угле. Тогда получим $\widehat{OLN}=\widehat{ODN}=60^\circ$ и $\widehat{OLD}-\widehat{OMD}=90^\circ$.

Э.Готман

М605. Задача о преобразовании плоскости

Условие

На плоскости отмечены $2n + 1$ различных точек. Занумеруем их числами $1, 2, \ldots, 2n + 1$ и рассмотрим следующее преобразование $R$ плоскости: сначала делается симметрия относительно первой точки, затем относительно второй и т. д. — до $\left(2n + 1\right)$-й точки.

а) Покажите, что y этого преобразования $R$ есть единственная «неподвижная точка» (точка, которая отображается в себя).

Рассмотрим всевозможные способы нумерации наших $2n + 1$ точек (числами $1, 2, \ldots, 2n + 1$). Каждой такой нумерации соответствует свое преобразование плоскости $R$ и своя неподвижная точка. Пусть $F$ — множество неподвижных точек всех этих преобразований.

б) Укажите множество $F$ для $n = 1$.

в) Какое максимальное и какое минимальное количество точек может содержать множество $F$ при каждом $n = 2, 3, \ldots$

Решение

Фиксируем произвольную систему координат.

Пусть точки $A\left(x; y\right)$ и $A^*\left(x^*; y^*\right)$ симметричны относительно точки $A’\left(x’; y’\right)$. Тогда $x’ = \frac{\left(x + x^*\right)}{2}, y’ = \frac{\left(y + y^*\right)}{2},$ откуда $$x^* = 2x’ — x, y^* = 2y’ — y.$$

Таким образом, точка с координатами $\left(x; y\right)$ при симметрии относительно точки с координатами $\left(x’; y’\right)$ переходит в точку с координатами $\left(2x’ — x; 2y’ — y\right)$.

Поэтому при нашем преобразовании $R$ точка с координатами $\left(x; y\right)$ перейдет в точку с координатами $\left(-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1}; -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1}\right),$ где $\left(x_i; y_i\right)$ — координаты $i$-й из заданных $2n + 1$ точек.

a) Для неподвижной точки $\left(x; y\right)$ преобразования $R$ эти координаты определяются однозначно из условия $$ \begin{cases}-x + 2x_1 — 2x_2 + \cdots + 2x_{2n + 1} = x \\ -y + 2y_1 — 2y_2 + \cdots + 2y_{2n + 1} = y\end{cases}$$ и равны $\left(x_1 — x_2 + \cdots — x_{2n} + x_{2n + 1}; y_1 — y_2 + \cdots — y_{2n} + y_{2n + 1}\right)$ или $$\left(\sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} x_i; \sum_{i = 1}^{2n + 1} \left(-1\right)^{i — 1} y_i\right) \tag{*}$$ Утверждение a) доказано.

б) Пусть сначала данные точки $X_1, X_2, X_3$ не лежат на одной прямой. Если точка $A_1$ после симметрии относительно точек $X_1, X_2, X_3$ отобразилась в себя (см. рисунок), то $X_1, X_2, X_3$ — середины отрезков $A_1A_2, A_2A_3, A_3A_1$, где $A_2 = SX_1\left(A_1\right)$, $A_3 = SX_2\left(A_2\right)$. Значит, $\left[A_1A_2\right]$, $\left[A_2A_3\right]$, $\left[A_3A_1\right]$ — медианы треугольника $A_1A_2A_3$, так что точки $A_1, A_2, A_3$ можно получить из точек $X_1, X_2, X_3$ гомотетией с центром в центре тяжести $O$ треугольника $X_1X_2X_3$ и коэффициентом $(—2)$. Этим положение точек $A_i \left(i = 1, 2, 3\right)$ определяется однозначно. С другой стороны, каждая точка $A_i$ при соответствующей композиции симметрий относительно точек $X_i$, отображается в себя (например, $SX_2\left(SX_1\left(SX_3\left(A_3\right)\right)\right) = A_3$). Поэтому множество $F$ — это три точки, получающиеся из данных точек $X_1, X_2, X_3$ гомотетией с центром $O$ и коэффициентом $(-2)$. Легко видеть, что, если данные точки $X_1, X_2, X_3$ лежат на прямой, ответ получается, в разумном смысле, тот же.

в) Глядя на выражение $(*)$, нетрудно сообразить, что в множестве $F$ точек не больше, чем число способов выбрать из $2n + 1$ данных точек те $n$ точек, перед абсциссами которых в выражении $(*)$ будет стоять знак «минус», то есть не больше, чем $C^n_{2n + 1}$. Очевидно, эта оценка точна (возьмите, например, $2n + 1$ точек на одной прямой с целыми координатами $1, 2, 2^2, \ldots, 2^{2n}$).

Оценим теперь число неподвижных точек снизу. Спроектируем данные $2n + 1$ точек на прямую так, чтобы никакие две точки не попали в одну. На этой прямой введем координаты и перенумеруем точки в порядке возрастания координат: $x_1 < x_2 < \ldots < x_{2n + 1}$. Поставим $n$ минусов перед первыми $n$ числами и рассмотрим сумму $- x_1 — x_2 — \cdots — x_n + x_{n + 1} + \cdots + x_{2n + 1}$: она будет соответствовать некоторой неподвижной точке из нашего множества $F$. Далее произведем следующую операцию: выберем пару чисел $x_i$ и $x_{i + 1}$ таких, что перед $x_i$ стоит минус, а перед $x_{i + 1}$ — плюс, и поменяем у них знаки (на первом шаге, очевидно, $i = n$). Каждая такая операция приводит к сумме, соответствующей неподвижной точке из множества $F$, причем, поскольку после каждой такой операции сумма уменьшатся, все эти неподвижные точки различны. Всего таких операций (вне зависимости от их порядка) мы можем произвести $n\left(n + 1\right)$, что уже даст нам $n\left(n + 1\right) + 1$ неподвижных точек. Значит, в $F$ точек не меньше $n\left(n + 1\right) + 1$. Ровно столько неподвижных точек получится, если, например, снова взять $2n + 1$ точек на прямой с целыми координатами $-n, -\left(n — 1\right), \ldots, -1, 0, 1, 2, \ldots, n — 1, n$. При всевозможных способах расстановки $n$ «минусов» перед некоторыми из них максимальное значение суммы этих чисел равно $2 \cdot \left(1 + 2 + \cdots + n\right) = n(n + 1)$, минимальное значение равно $-n\left(n + 1\right)$, причем сумма может принимать любое четное значение между числами $-n\left(n + 1\right)$ и $n\left(n + 1\right)$ — всего $n\left(n + 1\right) + 1$ значений.

И. Клумова, А. Талалай

М704. О квадрате, вокруг которого описан параллелограмм

Задача из журнала «Квант» (1981 год, 9 выпуск)

Условие

Вокруг квадрата описан параллелограмм (вершины квадрата лежат на разных сторонах параллелограмма). Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют новый квадрат $(рис. 1).$

Решение

Пусть вокруг черного квадрата $(см. рис. 1)$ описан голубой параллелограмм $ABCD$ и через все его вершины проведены красные прямые, перепендикулярные сторонам квадрата. Достаточно доказать, что при повороте на $90^{\circ}$ вокруг центра $O$ черного квадрата красные прямые переходят друг в друга.

                                              $ Рис. 1.$

Пусть $H = R_{0}^{90^{\circ}}(A).$ Поскольку стороны повернутого параллелограмма перпендикулярны сторонам исходного, $(HE)\perp (AB)$ и $(HF)\perp (BC).$ Поэтому $H$ — точка пересечения высот треугольника $EBF$ и, следовательно, $H$ лежит на красной прямой, проведенной через вершину $B.$ Таким образом, красная прямая, проведенная через точку $A,$ переходит при повороте $R_{0}^{90^{\circ}}$ в красную прямую, проведенную через точку $B.$ Отсюда немедленно следует утверждение задачи.

Теорема о том, что три высоты треугольника пересекаются в одной точке (мы надеемся, известная нашим читателям), не доказывается в школьном учебнике. Поэтому мы приведем еще одно решение задачи $M704,$ хотя и не столь изящное, но тоже простое.

Это решение годится и для более общего случая, когда роль квадрата играет черный параллелограмм $(рис. 2):$ мы докажем, что красные прямые (соответственно параллельные сторонам черного параллелограмма) образуют параллелограмм, гомотетичный черному параллелограмму.

                                $ Рис. 2.$

Для доказательства достаточно проверить, что красная точка $K$ (см. рисунок 3 — фрагмент рисунка 2) лежит на диагонали параллелограмма $EG.$ Из подобия заштрихованных треугольников следует, что $\frac{x}{a} = \frac{b}{v}$ и $\frac{a}{y} = \frac{u}{b}$ (обозначения см. на рисунке 3). Перемножив эти равенства, получим $\frac{x}{y} = \frac{u}{v},$ а это и значит, что точка $K$ лежит на $EG.$

                                      $ Рис. 3.$

Полученный результат напоминает теорему Паппа, которую $Д.~ Гильберт$ и $С.~ Кон-Фоссен$ в своей замечательной (переизданной недавно по-русски) книге «Наглядная геометрия» формулируют так $(с. 126—127):$ если вершины замкнутой шестизвенной ломаной лежат попеременно на двух прямых и две пары ее противоположных звеньев параллельны, то и третья пара звеньев параллельна (на рисунке 3 — как раз такая ломаная $AKBEFGA$).

На этом возможности обобщений не исчерпаны. Если «сфотографировать» конфигурацию рисунка 3 (то есть спроектировать ее из некоторой точки $S,$ не лежащей в плоскости рисунка, на непараллельную плоскость), мы получим конфигурацию Паскаля: три пары параллельных на рисунке 3 прямых будут пересекаться на «фотографии» в трех точках одной прямой — нам удобно обозначить их $A_{1},$ $F_{1}$, $B_{1}$ $(рис. 4)$ — и наша теорема о точках $E,$ $K,$ $G$ превратиться в такую теорему: если каждая тройка точек $A,$ $B,$ $F$ и $A_{1},$ $B_{1},$ $F_{1}$ лежит на прямой, то точки $(AB_{1})\cap (A_{1}B),$ $(BF_{1})\cap (B_{1}F)$ и $(AF_{1})\cap (A_{1}F)$ также лежат на прямой.                                                $Рис. 4.$

Н.Васильев