Евклидово пространство

Определение 1. Пусть дано вещественное линейное пространство $E$. Оно называется евклидовым, если на нем задано отображение из каждой пары векторов в соответствующее ей вещественное число. Назовем это отображение скалярным произведением. Отображение должно удолетворять следующим аксиомам:

  1. $\left(x, y \right) = \left(y, x \right),$
  2. $\left(\lambda x, y \right) = \lambda \left(x, y \right),$
  3. $\left(x + y, z \right) = \left(x, z\right) + \left(y, z\right),$
  4. $\left(x, x \right) > 0 \quad при \quad x \not= 0; (x, x) = 0 \quad при \quad x = 0; \forall x, y, z \in E, \forall \lambda \in R.$

Отсюда можно получить ряд следствий:

  1. $\left(x, \lambda y\right) = \lambda \left(x, y \right)$,
  2. $\left(x, y + z \right) = \left(x, y \right) + \left(x, z \right)$,
  3. $\left(x {-} z, y \right) = \left(x, y \right){-}\left(z, y \right)$,
  4. $\left(x, y {-} z \right) = \left(x, y \right){-}\left(x, z \right)$,
  5. $\forall a = \sum\limits_{j = 1}^m \alpha_j x_j$, $b = \sum\limits_{i = 1}^n \beta_i y_i: \\ \left(x, y\right) = \left(\sum\limits_{j = 1}^m \alpha_j x_j, b = \sum\limits_{i = 1}^n \beta_i y_i\right) = \sum\limits_{j = 1}^m \sum\limits_{i = 1}^n \alpha_j \beta_i \left(x_j, y_i \right)$

Любое n-мерное линейное пространство можно превратить в евклидово(с помощью определения в нем скалярного произведения). В n-мерном линейном пространстве скалярное произведение можно задать различными способами.

Например, возьмем в произвольном вещественном пространстве $G$ его некоторый базис $g = {e_1, e_2, \cdots, e_n}$ и два любых вектора $x$, $y$. Допустим, $$x = \sum\limits_{i = 1}^n \alpha_i e_i \quad y = \sum\limits_{i = 1}^n \beta_i e_i$$

Теперь можно ввести скалярное произведение: $\left(x, y\right) = \sum\limits_{i = 1}^n \alpha_i \beta_i.$

Любое подпространство из $E$ может быть Евклидовым, если в нем сохраняется скалярное произведение, определенное в $E$.

Определение 2. Пусть дан вектор $x$, принадлежащий евклидову пространству. Если $(x, x) = 1$, то этот вектор называется нормированным. Ненулевой вектор можно нормировать, если умножить его на произвольное число $\lambda$: $$\left(\lambda x, \lambda x \right) = \lambda^2 \left(x, x\right) = 1.$$

Значит, нормирующий множитель $\left(\lambda \right) = \left( x, x \right)^{{-}\frac{1}2}$

Определение 3. Пусть вектор $x$ принадлежит евклидову пространству $E$. Длиной вектора $x$ назовем число $\mid x \mid = + \sqrt{\left(x, x\right)}$, где $x \in R.$ Данное определение имеет свойства длины:

  1. $\mid 0 \mid = 0.$
  2. $\mid x \mid > 0, если x \not= 0.$
  3. $\mid \lambda \cdot x \mid = {\mid \lambda \mid}{\mid x \mid}$ — свойство абсолютной однородности.

Определение 4. Пусть даны векторы $x, y$, принадлежащие евклидову пространствую. Тогда $ \displaystyle \cos \left(x, y \right) = \frac{ \left(x, x \right)}{{ \mid x \mid}{ \cdot}{ \mid y \mid}}, 0 \leqslant \left(x, y \right) \leqslant \pi$ — косинус угла между этими векторами

Рассмотрим применимость школьной геометрии к геометрии евклидова пространства. Пусть заданы два вектора $x, y \in E; x \not= 0, y \not= 0$ — две стороны треугольника. Тогда разность $y-x$ — третья сторона. С помощью формулы для угла можно вычислить квадрат третьей стороны: $${\mid y-x\mid}^2 = \left(y-x, y-x \right) = {\mid y \mid}^2+{\mid x \mid}^2 {-} 2 \left(y, x\right) = {\mid y \mid}^2+{\mid x \mid}^2 {-} \mid y \mid \mid x \mid \cos \left(b, a\right)$$

Получили теорему косинусов. Разумеется, если $y \bot x$, то треугольник является прямоугольным. Также, из последней формулы можно получить теорему Пифагора: ${\mid y-x\mid}^2 = {\mid y \mid}^2+{\mid x \mid}^2.$ Из той же формулы получаем отношение длин сторон треугольника, если оценивать множитель $cos(b^a)$ сверху: $${\mid y-x\mid}^2 \leqslant {\mid y \mid}^2+{\mid x \mid}^2 {+} 2{\mid y \mid}{\mid x \mid} = \left({\mid y \mid}+{\mid x \mid}\right)^2 \Rightarrow \mid y-x \mid \leqslant {\mid y \mid}+{\mid x \mid}.$$

И снизу: $${\mid y-x\mid}^2 \leqslant {\mid y \mid}^2+{\mid x \mid}^2 {-} 2{\mid y \mid}{\mid x \mid} = \left({\mid y \mid}-{\mid x \mid}\right)^2 \Rightarrow \mid y-x \mid \leqslant {\mid y \mid}-{\mid x \mid}.$$

Литература

  1. Электронный конспект по линейной алгебре Белозерова Г.С.
  2. Воеводин В.В. Линейная алгебра.Стр. 88-90
  3. Курош А.Г. Курс высшей алгебры.Стр. 211-212

Измерения в евклидовом пространстве

1. Определить скалярное произведение векторов $latex X, Y$

$latex X=(2, 1, -1, 2)$, $latex Y=(3, -1, -2, 1)$.

Нам известна теорема о том, что если два вектора $latex a,b$ заданы своими декартовыми прямоугольными координатами, то скалярное произведение этих векторов равно сумме попарных произведений соответствующих координат.
Воспользуемся ей. Получим:

$latex (X,Y)=2\cdot 3 + 1\cdot (-1) + (-1)\cdot (-2) + 2\cdot 1 =9$

Ответ: 9.

2. Нормировать вектор $latex X=(1,3,0,-2)$

Для того, чтобы нормировать вектор нам необходимо найти его модуль, и каждую координату разделить на него.

$latex |X|= \sqrt{1^2+3^2+(-2)^2}=\sqrt{13}$

$latex X’ = (\frac{1}{\sqrt{13}},\frac{3}{\sqrt{13}},0,-\frac{2}{\sqrt{13}})$

Ответ: $latex X’ = (\frac{1}{\sqrt{13}},\frac{3}{\sqrt{13}},0,-\frac{2}{\sqrt{13}})$.

3. Определить угол между векторами $latex X, Y$

$latex X= (1, 2, 2, 3)$, $latex Y= (3, 1, 5, 1).$

Нам известно, что по определению скалярного произведения $latex (a,b)= |a|\cdot |b| \cos\angle (a,b)\Rightarrow \cos\angle (a,b)= \frac{(a,b)}{|a|\cdot |b|}$

Воспользовавшись тем, что $latex |a|=\sqrt{x_{1}^2+x_{2}^2+…+x_{n}^2}$, а также предыдущей формулой и метод нахождения скалярного произведения из первой задачи, получаем:

$latex \cos\angle (X,Y)= \frac{1\cdot 3 +2\cdot 1 + 2\cdot 5 + 3\cdot 1}{\sqrt{1^2+2^2+2^2+3^2}\cdot \sqrt{3^2+1^2+5^2+1^2}}$

$latex \cos\angle (X,Y)= \frac{18}{\sqrt{18}\cdot \sqrt{36}}=\frac{1}{\sqrt{2}}.$

Ответ: угол между векторами $latex X,Y $ равен $latex 45^\circ$.

4.Определить косинусы внутренних углов треугольника $latex ABC$, заданного координатами  вершин:

$latex A=(1,2,1,2)$, $latex B=(3,1,-1,0)$, $latex C=(1,1,0,1)$

Для того, что найти соответствующие углы необходимо найти координаты векторов, являющихся сторонами данных углов.
Найдем их.

$latex AB= (3-1,1-2,-1-1,0-2)= (2,-1,-2,-2)$

$latex |AB|= \sqrt{2^2+(-1)^2+(-2)^2+(-2)^2}= \sqrt{13}$

$latex CB= (3-1,1-1,-1-0,0-1)= (2,0,-1,-1)$

$latex |CB|= \sqrt{2^2+(-1)^2+(-1)^2}= \sqrt{6}$

$latex AC= (1-1,1-2,0-1,1-2)= (0,-1,-1,-1)$

$latex |AC|= \sqrt{(-1)^2+(-1)^2+(-1)^2}= \sqrt{3}$

Воспользовавшись методом решения третей  задачи, найдем косинусы углов $latex A, B, C$.

$latex \cos\angle A= \frac{(-1)\cdot (-1)+(-1)\cdot (-2)+(-1)\cdot (-2)}{\sqrt{3}\cdot \sqrt{13}}= \frac{5}{\sqrt{39}}$

$latex \cos\angle B= \frac{2\cdot 2+(-2)\cdot (-1)+(-2)\cdot (-1)}{\sqrt{13}\cdot \sqrt{6}}= \frac{8}{\sqrt{78}}$

$latex \cos\angle C= \frac{1\cdot (-1) + 1\cdot (-1)}{\sqrt{6}\cdot \sqrt{3}}= -\frac{\sqrt{2}}{3}$

Ответ: $latex \cos\angle A= \frac{5}{\sqrt{39}}$, $latex \cos\angle B= \frac{8}{\sqrt{78}}$,  $latex \cos\angle C= -\frac{\sqrt{2}}{3}$.

Литература:

Тест