Евклидово пространство

Определение 1. Пусть дано вещественное линейное пространство $E$. Оно называется евклидовым, если на нем задано отображение из каждой пары векторов в соответствующее ей вещественное число. Назовем это отображение скалярным произведением. Отображение должно удолетворять следующим аксиомам:

  1. $\left(x, y \right) = \left(y, x \right),$
  2. $\left(\lambda x, y \right) = \lambda \left(x, y \right),$
  3. $\left(x + y, z \right) = \left(x, z\right) + \left(y, z\right),$
  4. $\left(x, x \right) > 0 \quad при \quad x \not= 0; (x, x) = 0 \quad при \quad x = 0; \forall x, y, z \in E, \forall \lambda \in R.$

Отсюда можно получить ряд следствий:

  1. $\left(x, \lambda y\right) = \lambda \left(x, y \right)$,
  2. $\left(x, y + z \right) = \left(x, y \right) + \left(x, z \right)$,
  3. $\left(x {-} z, y \right) = \left(x, y \right){-}\left(z, y \right)$,
  4. $\left(x, y {-} z \right) = \left(x, y \right){-}\left(x, z \right)$,
  5. $\forall a = \sum\limits_{j = 1}^m \alpha_j x_j$, $b = \sum\limits_{i = 1}^n \beta_i y_i: \\ \left(x, y\right) = \left(\sum\limits_{j = 1}^m \alpha_j x_j, b = \sum\limits_{i = 1}^n \beta_i y_i\right) = \sum\limits_{j = 1}^m \sum\limits_{i = 1}^n \alpha_j \beta_i \left(x_j, y_i \right)$

Любое n-мерное линейное пространство можно превратить в евклидово(с помощью определения в нем скалярного произведения). В n-мерном линейном пространстве скалярное произведение можно задать различными способами.

Например, возьмем в произвольном вещественном пространстве $G$ его некоторый базис $g = {e_1, e_2, \cdots, e_n}$ и два любых вектора $x$, $y$. Допустим, $$x = \sum\limits_{i = 1}^n \alpha_i e_i \quad y = \sum\limits_{i = 1}^n \beta_i e_i$$

Теперь можно ввести скалярное произведение: $\left(x, y\right) = \sum\limits_{i = 1}^n \alpha_i \beta_i.$

Любое подпространство из $E$ может быть Евклидовым, если в нем сохраняется скалярное произведение, определенное в $E$.

Определение 2. Пусть дан вектор $x$, принадлежащий евклидову пространству. Если $(x, x) = 1$, то этот вектор называется нормированным. Ненулевой вектор можно нормировать, если умножить его на произвольное число $\lambda$: $$\left(\lambda x, \lambda x \right) = \lambda^2 \left(x, x\right) = 1.$$

Значит, нормирующий множитель $\left(\lambda \right) = \left( x, x \right)^{{-}\frac{1}2}$

Определение 3. Пусть вектор $x$ принадлежит евклидову пространству $E$. Длиной вектора $x$ назовем число $\mid x \mid = + \sqrt{\left(x, x\right)}$, где $x \in R.$ Данное определение имеет свойства длины:

  1. $\mid 0 \mid = 0.$
  2. $\mid x \mid > 0, если x \not= 0.$
  3. $\mid \lambda \cdot x \mid = {\mid \lambda \mid}{\mid x \mid}$ — свойство абсолютной однородности.

Определение 4. Пусть даны векторы $x, y$, принадлежащие евклидову пространствую. Тогда $ \displaystyle \cos \left(x, y \right) = \frac{ \left(x, x \right)}{{ \mid x \mid}{ \cdot}{ \mid y \mid}}, 0 \leqslant \left(x, y \right) \leqslant \pi$ — косинус угла между этими векторами

Рассмотрим применимость школьной геометрии к геометрии евклидова пространства. Пусть заданы два вектора $x, y \in E; x \not= 0, y \not= 0$ — две стороны треугольника. Тогда разность $y-x$ — третья сторона. С помощью формулы для угла можно вычислить квадрат третьей стороны: $${\mid y-x\mid}^2 = \left(y-x, y-x \right) = {\mid y \mid}^2+{\mid x \mid}^2 {-} 2 \left(y, x\right) = {\mid y \mid}^2+{\mid x \mid}^2 {-} \mid y \mid \mid x \mid \cos \left(b, a\right)$$

Получили теорему косинусов. Разумеется, если $y \bot x$, то треугольник является прямоугольным. Также, из последней формулы можно получить теорему Пифагора: ${\mid y-x\mid}^2 = {\mid y \mid}^2+{\mid x \mid}^2.$ Из той же формулы получаем отношение длин сторон треугольника, если оценивать множитель $cos(b^a)$ сверху: $${\mid y-x\mid}^2 \leqslant {\mid y \mid}^2+{\mid x \mid}^2 {+} 2{\mid y \mid}{\mid x \mid} = \left({\mid y \mid}+{\mid x \mid}\right)^2 \Rightarrow \mid y-x \mid \leqslant {\mid y \mid}+{\mid x \mid}.$$

И снизу: $${\mid y-x\mid}^2 \leqslant {\mid y \mid}^2+{\mid x \mid}^2 {-} 2{\mid y \mid}{\mid x \mid} = \left({\mid y \mid}-{\mid x \mid}\right)^2 \Rightarrow \mid y-x \mid \leqslant {\mid y \mid}-{\mid x \mid}.$$

Литература

  1. Электронный конспект по линейной алгебре Белозерова Г.С.
  2. Воеводин В.В. Линейная алгебра.Стр. 88-90
  3. Курош А.Г. Курс высшей алгебры.Стр. 211-212

Конечномерность

Определение 1. Пусть линейное пространство называется конечномерным, если существует такая константа $M \in \mathbb{N}$, так что любая линейно независимая система (далее ЛНЗ) содержит не более $M$ векторов. В противном случае пространство называется бесконечномерным.

Замечание. Нулевое пространство будем считать конечномерным.

Пример 1. Бесконечномерным пространством является $(R[x], \mathbb{R})$. Рассмотрим систему векторов $\left\langle 1, x, x^{2}, \ldots, x^{n}\right\rangle.$ Это система ЛНЗ, так как из равенства $\alpha_{0} \cdot 1+\alpha_{1}\cdot x+\alpha_{2} \cdot x^{2}+\ldots+\alpha_{k}\cdot x^{k}=0$ следует, что $\alpha_{0}=\alpha_{1}=\alpha_{2}= \ldots =\alpha_{k}=0.$ Так как $k$ произвольно, то не существует ограничения $M$.

Пример 2. Пусть $X$ — конечномерное пространство. Рассмотрим в нем ЛНЗ систему, содержащую максимальное число векторов: $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle.$ Дополняя эту систему произвольным векторм $y$, получаем уже линейно зависимую систему: $\left\langle x_{1}, x_{2}, \ldots, x_{m}, y\right\rangle.$ Тогда вектор $y$ линейно выражается через исходную систему, а именно: $$y=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{m} x_{m}.$$

Лемма 1. Каждое подпространство конечномерного пространства в свою очередь конечномерно.

Лемма 2. Каждое подпространство есть линейная оболочка некоторой своей системы.

Конечномерность

Тест для проверки знаний по теме «Конечномерность».

Литература

  1. Личный конспект, составленный на основе лекций Белозерова Г.С..
  2. Воеводин В.В. Линейная алгебра М.: Наука, 1980.-400 с. (стр. 44-47)

Изоморфизм линейных пространств

Пусть заданы два линейных пространства над полем [latex]\mathbb{P}[/latex]: [latex]A[/latex] и [latex]B[/latex]. Тогда изоморфизмом f (обозначается как [latex]A \cong B[/latex]) называется биекция из [latex]A[/latex] в [latex]B[/latex], удовлетворяющая следующим условиям:
1) [latex]f(a+b) = f(a) + f(b)[/latex]
2) [latex]f(\lambda\cdot a) = \lambda\cdot f(a) [/latex]

Изоморфными пространствами называются такие линейные пространства, между которыми можно установить изоморфизм.

Свойства изоморфизма:
1) [latex]f(0) = 0[/latex]
2)[latex]f(-a) = -f(a)[/latex]
3) [latex]f(\sum_{j=1}^{k}a_j a_j) = \sum_{j=1}^{k}a_j f(a_j)[/latex]
4) При изоморфном отображении линейно независимая система не может стать линейно зависимой. Обратное также верно.
5) Базис [latex]A[/latex] отображается в базис [latex]B[/latex].
6) Прямая сумма подпространств в [latex]A[/latex] отображается в прямую сумму образов этих подпространств в [latex]B[/latex].

 

По сути, изоморфизм является линейным оператором с нулевым дефектом и максимальным рангом.

 

Теорема. Любые два конечномерные линейные пространства, имеющие одинаковую размерность и заданные над одним и тем же полем, изоморфны.

Зададим два линейных пространства [latex]X[/latex] и [latex]Y[/latex] над полем P, [latex]\textrm{dim} X = \textrm{dim} Y[/latex]. Пусть базис [latex]X[/latex] — [latex]e_1,e_2,\dots ,e_n [/latex]; Y — [latex]e’_1,e’_2,\dots , e’_n[/latex]. Возьмём в пространстве [latex]X[/latex] векторы $$x_{1} = \alpha_1 e_1+\alpha_2 e_2+\dots+\alpha_n e_n$$ и $$x_2 = \beta_1 e_1+\beta e_2+\dots+\beta e_n $$Тогда при изоморфизме [latex]X \cong Y[/latex]
$$
f(x_1+x_2)=f((\alpha_1 + \beta_1)e_1 + (\alpha_2 + \beta_2)e_2 + \dots + (\alpha_n + \beta_n)e_n) = \\
= (\alpha_1 + \beta_1)e’_1 + (\alpha_2 + \beta_2)e’_2 + \dots + (\alpha_n + \beta_n)e’_n = \\
=(\alpha_1 e’_1 + \alpha_2 e’_2 + \dots + \alpha_n e’_n ) + (\beta_1 e’_1 + \beta_2 e’_2 + \dots + \beta_n e’_n) = f(x_1) + f(x_2).
$$
(первое условие изоморфизма) и
$$
f(\lambda x) = f((\lambda \alpha_1)e_1 + (\lambda \alpha_2)e_2 + \dots + (\lambda \alpha_n)e_n) = \\
= (\lambda \alpha_1)e’_1 + (\lambda \alpha_2)e’_2 + \dots + (\lambda \alpha_n)e’_n = \\
= \lambda(\alpha_1 e’_1 + \alpha_2 e’_2 + \dots + \alpha_n e’_n) = \lambda f(x)
$$
(второе условие).

Следствие. Все линейные пространства над одним и тем же полем [latex]\mathbb{P}[/latex] одинаковой размерности [latex]n[/latex] изоморфны [latex]n[/latex]-мерному арифметическому линейному пространству [latex]\mathbb{R}^n[/latex] над полем [latex]\mathbb{P}[/latex].

Примеры

1. Привести пример отображения из [latex]\mathbb{R}[/latex] в [latex]\mathbb{\mathbb{N}_0}[/latex], которое является изоморфизмом.
Решение

Пусть [latex]x’ = 2x[/latex]. Тогда [latex]f(a + b) = 2(a + b) = 2a + 2b = f(a) + f(b)[/latex] и [latex]f(\lambda a) = 2(\lambda a) = \lambda 2a = \lambda \cdot f(a)[/latex]. Значит, это отображение является изоморфизмом.

[свернуть]
2. Доказать первое свойство ([latex]f(0) = 0[/latex]).
Решение

[latex]f(a) = f(a + 0) = f(a) + f(0)[/latex], значит [latex]f(0) = 0[/latex].

[свернуть]

 

Смотрите также

Тест

Изоморфизм линейных пространств

Тест на знание изоморфизма линейных пространств.

Изоморфизм линейных пространств. Критерий изоморфности. Применение понятия изоморфизма к решению задач.

Спойлер

Изоморфизм линейных пространств, свойства

Дано два конечномерных линейных пространства [latex] (X_1, \mathbb{P})[/latex] и [latex] (X_2, \mathbb{P})[/latex], заданных над одним полем [latex] \mathbb{P}[/latex](любое числовое поле)
[latex] X_1 \simeq X_2[/latex] (изоморфны), если:

  1. [latex] \exists f: X_1 \to X_2[/latex] (т.е.[latex] \forall a\in X_1[/latex] сопоставляется вектор [latex] a`\in X`[/latex], образ вектора[latex] a[/latex], причём различные векторы из [latex] X[/latex] обладают различными образами и всякий вектор из [latex] X`[/latex] служит образом некоторого вектора из [latex] X[/latex]).
  2. [latex] f(\alpha a+\beta b) = \alpha f(a) + \beta f(b)[/latex], [latex] \forall a,b \in X_1[/latex], [latex] \forall \alpha, \beta \in P[/latex].

Свойства изоморфизма:

  1. [latex] f(0)= 0[/latex];
  2. [latex] f(-x)= f(x)[/latex];
  3. [latex] f(\sum\limits_{j=1}^k \alpha_je_j)= \sum\limits_{j=1}^k \alpha_j f(e_j)[/latex];
  4. ЛНЗ [latex] \to^f[/latex] ЛНЗ;
  5. ЛЗ [latex] \to^f[/latex] ЛЗ;
  6. Базис отображается в базис;
  7. dim [latex] X_1[/latex]= dim[latex] X_2[/latex];
  8. Прямая сумма [latex] \to[/latex] прямая сумма.

Критерий изоморфности:

[latex] X_1 \simeq X_2 \Leftrightarrow [/latex] dim [latex] X_1 = [/latex] dim [latex]X_2.[/latex]

[свернуть]

ПРИМЕР

Любой геометрический радиус-вектор плоскости, представим в виде:
[latex] x = ix_1 + jx_2[/latex]
svg111
При этом, если [latex] x = ix_1 + jx_2[/latex], [latex] y = iy_1 + jy_2[/latex], то
[latex] x + y = (x_1 + y_1)i +(x_2 + y_2)j[/latex] и [latex] \alpha x = (\alpha x_1)i + (\alpha x_2)j[/latex].
В результате устанавливаем взаимно однозначное соответствие [latex] x \Leftrightarrow (x_1, x_2)[/latex], соответствие между пространствами геометрических радиусов-векторов плоскости и двумерных арифметических векторов. Очевидно, оно будет изоморфизмом данных пространств, так как
если [latex] x \Leftrightarrow (x_1, x_2)[/latex], [latex] y \Leftrightarrow (y_1, y_2)[/latex], то [latex] x + y \Leftrightarrow (x_1 + y_1, x_2 + y_2)[/latex] и [latex] \alpha x \Leftrightarrow ( \alpha x_1, \alpha x_2 )[/latex].

Задача

Даны пространства [latex] A = \mathbb{R}[/latex] и [latex] B = \mathbb{R}[/latex]. Установить между ними соответствие, которое:

  1. будет являться изоморфизмом;
  2. не будет являться изоморфизмом.

Решение

  1. Первое, что мы делаем, это каждому числу [latex] a \in \mathbb{R}[/latex] ставим в соответсвие число [latex] b \in \mathbb{R}[/latex], придерживаясь правила: [latex] b= 2a[/latex]. Каждое [latex] b \in \mathbb{R}[/latex] будет отвечать единственному числу [latex] a= \frac{1}{2}b[/latex]. Отсюда следует, что утверждение [latex] b= 2a[/latex] устанавливает взаимно однозначное соответствие [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex]. Если [latex] a_1 \Leftrightarrow b_1[/latex] и [latex] a_2 \Leftrightarrow b_2[/latex], т.е. [latex] b_1 = 2a_1[/latex] и [latex] b_2= 2a_2[/latex] то [latex] (a_1+a_2) \Leftrightarrow (b_1+b_2)[/latex], так как [latex] b_1+b_2= 2a_1+2a_2 = 2(a_1+a_2)[/latex]. Если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= 2a[/latex], то [latex] \lambda a \Leftrightarrow \lambda b[/latex] для каждого действительного числа [latex] \lambda [/latex], так как [latex] \lambda b= \lambda 2a= 2 \lambda a[/latex]. Как результат, в данном соответствии [latex] b= 2a[/latex] сохраняются линейные операции, и оно является изоморфизмом.
  2. Следующее взаимно однозначное соответствие, которое будем рассматривать [latex] \mathbb{R} \Leftrightarrow \mathbb{R}[/latex], устанавливается формулой [latex] b= a^3[/latex] (число сопоставляемое числу [latex] a= \sqrt[3]{b}[/latex]). Данное соответствие не будет являться изоморфизмом, потому что будет сохранять линейные операции. Как пример, если [latex] a \Leftrightarrow b[/latex], т.е. [latex] b= a^3[/latex], то [latex]{(2a)}^3= 8a^3= 8b[/latex]. Значит, [latex] 2a \Leftrightarrow 8b[/latex], возникает противоречие условию [latex] \lambda a \Leftrightarrow \lambda b[/latex] для [latex] \lambda = 2[/latex] .

Задача

Проверить, являются ли изоморфными пространства:
[latex] X_1= \{ f(x) \in R[x] | f(x) \quad\vdots\quad (x^2+1) \}[/latex] и [latex] X_2[/latex], натянутое на систему векторов [latex] <a_1, a_2, a_3>. a_1=(0,0,1,0,1)[/latex], [latex] a_2=(0,1,0,1,0)[/latex] и [latex] a_3=(1,0,1,0,0)[/latex].

Решение

Найдем базис [latex] X_1[/latex]
[latex] \forall f(x) \in X_1 \Leftrightarrow f(x)= [/latex] [latex](x^2+1)(ax^2+bx+c)=[/latex] [latex]ax^4+bx^3+ax^2+cx^2+bx+c=[/latex] [latex]a(x^4+x^2)+b(x^3+x)+c(x^2+1)[/latex], таким образом [latex]<x^4+x^2,x^3+x,x^2+1>[/latex] — базис.
Очевидно, что система [latex] <a_1,a_2,a_3>[/latex], на которую натянуто [latex] X_2[/latex] ЛНЗ (линейно независимая система), dim [latex] X_1 =[/latex] dim [latex] X_2= 3[/latex]. Следовательно по критерию изоморфности [latex] X_1 \simeq X_2[/latex].

Источники

  1. Белозеров Г.С. Конспект лекций
  2. Проскуряков И.В. Сборник задач по линейной алгебре. Издание пятое, 1974.Стр. 170

Изоморфизм линейных пространств

Тест по теме: «Изоморфизм линейных пространств. Критерий изоморфности»