функция $f + g$ дифференцируема в точке $x_0$ и $$(f + g)’(x_0) = f’(x_0) + g’(x_0);$$
функция $f \cdot g$ дифференцируема в точке $x_0$ и $$(f \cdot g)’(x_0) = f’(x_0)g(x_0) + f (x_0)g’(x_0);$$
если $g(x) \neq 0 (x \in (a,b))$, то функция $\dfrac{f}{g}$ дифференцируема в точке $x_0$ и $$(\dfrac{f}{g})’ = \dfrac{f’(x_0)g(x_0) — f (x_0)g’(x_0)}{g^2(x_0)}.$$
Утверждение $a)$ очевидно. Докажем $b)$. Имеем $$\dfrac{(f \cdot g)(x) — (f \cdot g)(x_0)}{x-x_0} = \dfrac{f(x)g(x) — f(x_0)g(x_0)}{x-x_0} =$$ $$= \dfrac{f(x)g(x) — f(x_0)g(x) + f(x_0)g(x) + f(x_0)g(x_0)}{x-x_0} =$$ $$ = \dfrac{f(x) — f(x_0)}{x-x_0}\cdot g(x) + f(x_0)\dfrac{g(x) — g(x_0)}{x-x_0}.$$ Используя непрерывность функции $g$ в точке $x_0$, которая следует из дифференцируемости, переходя к пределу при $x \to x_0$, получаем $b)$.
Для доказательства $c)$ рассмотрим сначала случай $f(x) \equiv 1$. Тогда $$\dfrac{\dfrac{1}{g(x)} — \dfrac{1}{g(x_0)}}{x — x_0} = — \dfrac {g(x)-g(x_0)}{x-x_0} \cdot \dfrac1{g(x)g(x_0)} \to -\dfrac{g’(x_0)}{g^2(x_0)} (x \to x_0).$$
Замечание. Непосредственно из определения производной следует, что $(c \cdot f)’(x_0) = c\cdot f’(x_0)$, где $c$ – постоянная. Поэтому, используя часть $a)$ доказанной теоремы, получаем, что операция дифференцирования является линейной операцией, т. е. производная линейной комбинации двух дифференцируемых функций равна линейной комбинации их производных – $$(\alpha\cdot f + \beta\cdot g)’(x_0) = \alpha\cdot f’(x_0) + \beta\cdot g’(x_0),$$ где $\alpha$ и $\beta$ – постоянные.
Примеры решения задач
Найти производную функции $ f(x) = 3x^2 + 7x + 3$ в точке $x_0 = 3$. Решение
Найти производную функции $f(x) = e^x\cos x$ Решение
Вновь воспользуемся вышеописанными формулами и таблицей производных, вследствие чего получим результат: $$f’(x) = (e^x\cos x)’ = (e^x)’\cdot\cos x + e^x\cdot(\cos x)’ = e^x\cos x — e^x\sin x$$
Найти производную функции $f(x) = \dfrac {\arccos x}{\sqrt x}$. Решение
Сначала рассмотрим пример. Пусть $ \DeclareMathOperator{\tg}{tg} f(x,y)=x^{2}+y^{2}$. Производной по $x$ называется $$\frac{\partial f}{\partial x}(x,y)=2x,$$
а производной по $y$ – $$\frac{\partial f}{\partial y}(x,y)=2y.$$
Полной производной, или дифференциалом, согласно примеру $1$, будет $A(h,k)=2xh+2yk$, $A = \mathrm{d}f(x,y).$
Определение. Пусть $f\colon E\to \mathbb{R}$, где открытое множество $E\subset{\mathbb{R}^{n}}$, и точка $x_{0}\in{E}$. Если существует $$\lim_{t \rightarrow 0}\frac{f(x_{0}+te_{i})-f(x_{0})}{t},$$ то этот предел называется $i$-й частной производной функции $f$ по переменной $x^{i}$ в точке $x_{0}$ и обозначается одним из символов $\frac{\partial f}{\partial x^{i}}(x_{0}),$ ${f}’_{x^{i}}(x_{0}),$ $\mathrm{D}_{i}f(x_0),$ ${f}’_{i}(x_{0}).$
В этом определении $e_{i}$ – $i$-й координатный вектор. Все его координаты – нули, за исключением $i$-й, равной $1$, а $t \neq 0$ пробегает действительные значения, близкие к нулю, так, чтобы точка $x_{0} + te_{i}$ оставалась во множестве $E.$
Можно записать $$\frac{\partial f }{\partial x^{i}}(x_0)=\lim_{t \rightarrow 0}\frac{f(x_{0}^{1},\ldots, x_{0}^{i}+t,\ldots, x_{0}^{n})-f(x_{0}^{1},\ldots, x_{0}^{n})}{t}.$$
Эта запись показывает, что частную производную можно рассматривать как производную функции $f$ по переменной $x_{i}$ при фиксированных значениях всех остальных переменных. Точнее, $\frac{\partial f}{\partial x^{i}}(x_{0})$ есть производная функции одного переменного $g(\xi)=f(x_{0}^{1},\ldots, x_{0}^{i-1}, \xi, x_{0}^{i+1},\ldots, x_{0}^{n})$ в точке $\xi = x_{0}^{i}.$
Частная производная – это число, в отличие от производной $f'(x_{0}),$ которая называется также полной производной. Полная производная является линейной формой.
Теорема 4. Пусть $f$ – действительная функция, заданная на открытом множестве $E\subset{\mathbb{R}^{n}}$. Если функция $f$ дифференцируема в точке $x_{0}\in{E}$, то в этой точке у нее существуют частные производные по всем переменным. При этом справедливо равенство $$f(x_{0}+h)-f(x_{0})=\frac{\partial f}{\partial x^{1}}(x_{0})h^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})h^{n}+\bar{o}(\left | h \right |). \quad (12.11)$$
Пусть $A={\mathrm{d} f}(x_{0})$. Тогда, по определению дифференцируемости, $$f(x_{0}+h)-f(x_{0})= A(h)+\bar{o}(\left | h \right |). \quad (12.12)$$
Положим $h = te_{i}$, где достаточно малое $t\neq 0.$ Тогда получим $$f(x_{0}+te_{i})−f(x_{0})=tA(e_{i})+\bar{o}(\left | t \right |).$$
Отсюда следует, что $$\frac{f(x_{0}+te_{i})-f(x_{0})}{t}\to A(e_{i})\quad(t\to 0).$$
Тем самым мы доказали, что существует $\frac{\partial f}{\partial x^{i}}(x_{0})=A(e_{i})$. Заметим, что $$A(h) = A(e_{1})h^{1}+\ldots+A(e_{n})h^{n},$$ и поэтому из $(12.12)$ следует $(12.11).$
При доказательстве теоремы нами установлено соотношение $$\frac{\partial f}{\partial x^{i}}(x_{0})=\mathrm{d}f(x_{0})e_{i}\quad(i=1,\ldots,n).$$
В правой его части записано значение линейной формы $\mathrm{d}f(x_{0})$ на $i$-м базисном векторе $e_{i}$.
Формулой $$\mathrm{d}f(x_{0})h=\frac{\partial f}{\partial x^{1}}(x_{0})h^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})h^{n}\quad(h\in \mathbb{R}^{n})$$ описывается дифференциал $\mathrm{d}f(x_{0})$ как линейная форма. Заметим, что из этой формулы вытекает равенство $$\mathrm{d}f(x_{0})=\frac{\partial f}{\partial x^{1}}(x_{0})\pi^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})\pi^{n},$$ где $\pi^{i}(h)$ – $i$-я проекция.
Таким образом, частные производные – это координаты полной производной или дифференциала в стандартном базисе $\pi^{1}, \ldots, \pi^{n}$ сопряженного пространства.
Пример 1. Пусть $f(x, y)=x^{2}+y^{2}.$ Как было установлено выше, частные производные этой функции по переменным $x$ и $y$ соответственно равны $2x$ и $2y.$ Вычислим значение дифференциала этой функции в точке $(1, 2)$ на векторе $(−3, 5).$ Имеем
$$\frac{\partial f}{\partial x}(1, 2)=2,\quad \frac{\partial f}{\partial y}(1, 2)=4,\quad \mathrm{d}f(1, 2)(−3, 5) = 2(−3)+4·5=14.$$
Запишем разложение $\mathrm{d}f(1, 2)$ по базисным линейным формам $\pi^{1},$ $\pi^{2}:$
$$\mathrm{d}f(1, 2) = 2\pi^{1} + 4\pi^{2}.$$
Это выражение полностью описывает дифференциал.
Пример 2. Рассмотрим функцию $f(x) = \left | x \right |$, $x\in \mathbb{R}^{n}$. Покажем, что в начале координат у нее нет ни одной частной производной. Действительно, например, $f(x^{1}, 0, \ldots, 0) = \left | x^{1} \right |$, но, как хорошо известно, у этой функции нет производной в нуле по переменной $x^{1}.$ Аналогично показываем, что в начале координат нет частных производных по остальным переменным.
Рассмотрим геометрический смысл частной производной на примере функции $f(x, y)$ двух переменных. Сечением графика функции $f(x, y)$ плоскостью $y = y_{0}$ есть некоторая кривая – график функции одного переменного $f(x, y_{0})$. Касательная к этому графику в точке $x = x_{0}$ образует некоторый угол $\alpha$ с положительным направлением оси $Ox$. Тангенс этого угла $\tg \alpha$ и есть частная производная функции $f(x, y)$ по переменной $x$ в точке $(x_{0}, y_{0})$, т. е. $\tg \alpha = \frac{\partial f}{\partial x}(x_{0}, y_{0})$.
Частные производные в точке $(x_{0}, y_{0})$ характеризуют поведение функции вблизи точки $(x_{0}, y_{0})$ вдоль прямых, параллельных координатным осям. В случае $n \geq 2$ из существования частных производных не следует дифференцируемость функции. Например, пусть функция $f(x, y) = 1$, если $xy = 0$, и $f(x, y) = 0$ во всех остальных точках $(x, y)$. Тогда очевидно, что $\frac{\partial f}{\partial x}(0, 0)=\frac{\partial f}{\partial y}(0, 0)=0$, но, в то же время, функция $f$ разрывна в точке $(0, 0)$ и, тем более, она не является дифференцируемой в этой точке.
Пример 1. Пусть
$$f(x, y)=\left\{\begin{matrix}\frac{xy}{x^{2}+y^{2}}, \quad x^{2}+y^{2}>0, &\\0, \quad x^{2}+y^{2}=0.\end{matrix}\right.$$
Если $x^2 + y^2 > 0$, то
$$\frac{\partial f}{\partial x}(x, y)=y\frac{x^2+y^2-2x^2}{(x^2+y^2)^2}=y\frac{y^2-x^2}{(x^2+y^2)^2},\quad \frac{\partial f}{\partial y}(x, y)=x\frac{x^2-y^2}{(x^2+y^2)^2}.$$
Вычислим частные производные функции $f$ в начале координат. Поскольку $f(x, 0) = 0$, то $\frac{\partial f}{\partial x}(0, 0) = 0$. Аналогично $\frac{\partial f}{\partial y}(0, 0) = 0$. Таким образом, частные производные функции $f$ существуют во всех точках плоскости. Однако эта функция разрывна в начале координат, поскольку на прямой $x = y \neq 0$ справедливо равенство $f(x, x) = \frac{1}{2}$. Это означает, что ее предел не равен значению функции в точке $(0, 0)$.
Итак, функция $f$ разрывна в начале координат, так что она не является дифференцируемой в точке $(0, 0)$.
Пример 2. Функция
$$f(x, y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^{2}+y^{2}}}, \quad x^{2}+y^{2}>0, &\\0, \quad x^{2}+y^{2}=0.\end{matrix}\right.$$
как было показано ранее, непрерывна во всех точках плоскости. Легко видеть, что в каждой точке плоскости она имеет частные производные, однако, как было показано выше, в начале координат не является дифференцируемой.
Определение. Пусть действительная функция $f$ определена на открытом множестве $E\subset\mathbb{R}^{n}$. Предположим, что в каждой точке $x \in E$ существует частная производная $\frac{\partial f}{\partial x^{i}}(x)$. Тогда получаем функцию $x \to\frac{\partial f}{\partial x^{i}}(x)$, определенную на множестве $E$, которая обозначается $\frac{\partial f}{\partial x^{i}}$ и называется $i$-й частной производной.
Определение. Если функция $f$ в каждой точке $x$ множества $E$ имеет все частные производные $\frac{\partial f}{\partial x^{i}}$ и они непрерывны на множестве $E$ то функция $f$ называется непрерывно дифференцируемой на этом множестве. Через $C^1(E)$ обозначается класс всех непрерывно дифференцируемых на множестве $E$ функций.
Определение. Если функция $f$ дифференцируема в каждой точке множества $E$, то говорят, что $f$ дифференцируема на множестве $E$.
Теорема. Пусть функция $f$ принадлежит классу $C^{1}(E)$, где открытое множество $E\subset\mathbb{R}^{n}$. Тогда $f$ дифференцируема на $E$.
Фиксируем $x_{0} \in E$. Поскольку множество $E$ открыто, то существует шар $U_0$ с центром в этой точке, целиком содержащийся в $E$. Пусть $r$ – радиус этого шара и вектор $h$ имеет длину $\left | h \right | < r$. Обозначим $x_{j} = x_{0} + h^{1}e_{1} + \ldots+ h^{j}e_{j}\quad (j = 1, \ldots, n)$. Ясно, что $x_{n} = x_{0} + h$. Заметим, что все $x_{j}$ принадлежат шару $U_0$. Действительно,
$$\left | x_0-x_j \right |=\sqrt{\sum_{i=1}^{j}(h^{i})^{2}}\leq \left | h \right |<r.$$
Поскольку шар – выпуклое множество, то каждый из отрезков $[x_{j−1}, x_{j}]$ содержится в ${U_0}.$ Действительно, этот отрезок – это множество точек $x = (1 − t)x_{j−1} + tx_{j}$, где $0 \leq t \leq 1$, и мы получаем $$\left | x_0-x_j \right |=(1-t)\left | x_0-x_{j-1} \right |+t\left | x_0-x_{j} \right |<r.$$
Воспользуемся равенством
$$f(x_0 + h) − f(x_0) =\sum_{j=1}^{n}[f(x_j) − f(x_{j−1})].\quad(12.13)$$
Рассмотрим отдельно каждое из слагаемых в правой части. При фиксированном $j$ положим
$g(t) = f(x_{j−1} + te_{j})\quad (0 \leq t \leq h^j).$
По определению частной производной имеем
$$g'(t)=\frac{\partial f}{\partial x^{j}}(x_{j-1}+te_j).$$
По формуле Лагранжа получаем
$$f(x_j)-f(x_{j-1})=g(h^j)-g(0)=g'(\tau_j)h^j=\frac{\partial f}{\partial x^j}(\xi_j)h^j,$$ где $\xi_j=x_{j-1}+\tau_{j}e_{j}$ – некоторая точка отрезка, соединяющего $x_{j−1}$ и $x_j$. Имеем $\left |x_{0} − \xi_{j}\right | \leq \left |h \right |$. Обозначим
$$\alpha_j(h)=\frac{\partial f}{\partial x^j}(x_0)-\frac{\partial f}{\partial x^j}(\xi_j).$$
По условию все частные производные непрерывны в точке $x_0$ и поэтому
$$\lim_{x\to 0}\alpha_j(h)=0 \quad(j=1,\ldots, n).\quad(12.14)$$
В силу $(12.13)$ имеем
$$f(x_0+h)-f(x_0)=\sum_{j=1}^{n}\frac{\partial f}{\partial x^{j}}(\xi_j)h^j=$$ $$=\sum_{j=1}^{n}\frac{\partial f}{\partial x^{j}}(x_0)h^j-\sum_{j=1}^{n}\alpha_j(h)h^{j}=A(h)+\rho(h), $$
где
$$A(h)=\sum_{j=1}^{n}\frac{\partial f}{\partial x^j}(x_0)h^j,\quad \rho(h)=-\sum_{j=1}^{n}\alpha_j(h)h^j.$$
Итак, $A$ является линейной формой аргумента $h$, а
$$\left | \rho(h) \right |\leq\left | h \right |\sum_{j=1}^{n}\left | \alpha_{j}(h) \right |.$$
Поэтому, в силу соотношений $(12.14)$ получаем, что $\frac{\rho(h)}{\left | h \right |}\to 0$ при $h \to 0$.
Согласно определению дифференцируемости, теорема доказана.
Замечание. Из доказательства видно, что если функция имеет частные производные в некоторой окрестности точки $x_0$ и в этой точке все они непрерывны, то функция дифференцируема в точке $x_0.$
Следствие. Каждая функция класса $C^1$ непрерывна.
Замечание. Непрерывность частных производных – только достаточное условие дифференцируемости. Оно не является необходимым.
Пример. Пусть
$$f(x)=\left\{\begin{matrix}
\left | x \right | ^2\sin \frac{1}{\left | x \right |^2}, \quad x\neq0,
&\\ 0, \quad x=0.
\end{matrix}\right.$$
Найдем частные производные
$$\frac{\partial f}{\partial x^{i}}(x)=2x^{i}\sin \frac{1}{\left | x \right |^2}-\frac{2x^i}{\left | x \right |^2}\cos \frac{1}{\left | x \right |^2}\quad(x \neq 0).$$
При $x = 0$ наша функция дифференцируема, т. к. $f(h) − f(0) = f(h) =\bar{o}(\left | h \right |)$. Однако, как легко видеть, все частные производные разрывны в точке $x = 0$.
Примеры решения задач
Найти частные производные первого порядка функции $f(x,y)=\sin \frac{x}{y} \cos \frac{y}{x}:$
Решение
$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$
Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$
Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.
Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$
Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$
Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$
Связь между дифференцируемостью и непрерывностью устанавливает следующая
Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.
Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.
Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.
Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.
С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0) \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$
Примеры решения задач
Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$ Решение
Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
$ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$
Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна? Решение
Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$? Решение
$f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.
Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке. Решение
Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
$ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$
Найдите по определению $\sin x.$ на множестве $\mathbb{R}$ Решение
Пусть дана гладкая кривая [latex]\Gamma[/latex], которая задана уравнением в координатной форме, то есть [latex]\Gamma =\left \{ x = x(t), y = y(t), z = z(t), \alpha \leq t\leq \beta \right \}[/latex] и пусть функция [latex]f(x, y, z)[/latex] непрерывна вдоль кривой [latex]\Gamma[/latex]. Тогда существует криволинейный интеграл первого рода [latex]\int_{\Gamma}f(x, y, z)ds[/latex] и выполняется равенство:
$${ \underset {\Gamma}{ \int }}f(x, y, z)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(x(t), y(t), z(t))\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}\,dt.$$
Замечания:
Если [latex]\Gamma =\left \{ y = \psi(x), \alpha \leq x\leq \beta \right \}[/latex] и [latex]y = \psi(x)[/latex] непрерывно дифференцируема на отрезке [latex][a,b][/latex] и существует криволинейный интеграл первого рода [latex]\int_{\Gamma}f(x, y)ds[/latex], то выполняется равенство:
$${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(x, \psi(x))\sqrt{1 +(\psi'(x))^2}\,dx.$$
В случае, если кривая [latex]\Gamma[/latex] задана в полярной системе координат, то есть [latex]\Gamma = \left \{ \left. r = r(\varphi), \varphi_1\leq \varphi \leq \varphi _2 \right \} \right.[/latex] и [latex]r(\varphi)[/latex] непрерывно дифференцируема на отрезке [latex][\varphi_1, \varphi_2][/latex], то выполняется равенство:
$${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\varphi_2}{ \underset {\varphi_1}{ \int }} f(r(\varphi) \cos\varphi, r(\varphi) \sin\varphi)\sqrt{{r}^2(\varphi) + {(r'(\varphi))^2}}\,d\varphi.$$
[spoilergroup]
Пример
Вычислить криволинейный интеграл первого рода [latex]\int_{\Gamma }\sqrt{x^2 + y^2}{\mathrm{d} s}[/latex], где кривая [latex]\Gamma[/latex] задана уравнением [latex](x^2+y^2)^{\frac{3}{2}} = a^2(x^2 — y^2)[/latex].
Решение
Совершим переход к полярной системе координат, тогда [latex]x = r\cos\varphi[/latex], [latex]y = r\sin\varphi[/latex]. В этом случае уравнение кривой можно записать в следующем виде: [latex]r = a^2\cos2\varphi[/latex], [latex]\varphi \in\Phi = \left \{ \varphi , -\frac{\pi }{4} \leq \varphi \leq \frac{\pi }{4}, \frac{3\pi }{4}\leq \varphi \leq \frac{5\pi }{4}\right \}[/latex].
Дадим определение дифференцируемости функции в точке. Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$. Теорема 1.Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.
Доказательство
Пусть функция $f \left( x \right)$ дифференцируема в точке $x^0$. Тогда выполнено условие (1). Заметим, что равенство $\psi \left( x \right) = o \left( \rho \left( x, x^0 \right) \right)$ при $x \to x^0$ означает, что $\psi \left( x \right) = \varepsilon \left( x \right) \rho \left( x, x^0 \right)$, где $\lim_{x \to x^0} \varepsilon \left( x \right) = 0$.
Тогда $$\psi \left( x \right) = \frac{ \varepsilon \left( x \right) }{ \rho \left( x, x^0 \right) } \sum\limits_{i = 1}^{n} \left( x_i — x_i^0 \right) ^2 = \\ = \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (3)$$
где $\varepsilon \left( x \right) = \varepsilon \left( x \right) \frac{ x_i — x_i^0 }{ \rho \left( x, x^0 \right) }$, $\lim_{ x \to x^0 } \varepsilon \left( x \right) = 0$, так как $0 \leq \frac{ \left| x_i — x_i^0 \right| }{ \rho \left( x, x^0 \right) } \leq 1$.
Доопределим функции $\varepsilon_i \left( x \right)$ в точке $x^0$ по непрерывности, полагая $\lim_{x \to x^0} \varepsilon_i \left( x \right) = \varepsilon_i \left( x^0 \right) = 0$.
Тогда из (1) и (3) получаем $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } A_i \left( x_i — x_i^0 \right) + \sum\limits_{ i = 1 }^{ n } \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } f_i \left( x \right) \left( x_i — x_i^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right).$$ Так как функции $\varepsilon_i \left( x \right)$ непрерывны в точке $x^0$, то и функции $f_i \left( x \right)$ непрерывны в точке $x^0$ и $f_i \left( x^0 \right) = A_i, i = \overline{1, n}$.
Пусть выполнено (2). Тогда, воспользовавшись непрерывностью функции $f_i \left( x \right)$ в точке $x^0$, положим $$A_i = f_i \left( x^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right), \lim\limits_{x \to x^0} \varepsilon_i \left( x \right) = 0.$$ Получаем $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right),$$ так как $$\frac{ \left| \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) \right| }{ \rho \left( x, x^0 \right) } \leq \sum\limits_{i = 1}^{n} \left| \varepsilon_i \left( x \right) \right| \to 0, x \to x^0. $$
[свернуть]
Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$. Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$. Указание. Воспользоваться результатом упр. 1. Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение
Покажем, что существует число $C > 0$ такое, что для любых $x \in \mathbb{R}$ и $y \in \mathbb{R}$ справедливо неравенство $$\left| \sqrt[3]{x^3 + y^4} — x \right| \leq C \left| y \right| ^{\frac{4}{3}}. \qquad (4)$$ Если $y = 0$, то неравенство (4) справедливо при любом $C$. Пусть $y \ne 0$. Положим $t = xy^{- \frac{4}{3}}$. Тогда неравенство (4) эквивалентно неравенству $\left| \psi \left( t \right) \right| < C$, где $\psi \left( t \right) = \sqrt[3]{1 + t^3} — t$.
Так как функция $\psi \left( t \right)$ непрерывна на $\mathbb{R}$ и $\psi \left( t \right) \to 0$ при $t \to \infty$, то $\psi \left( x \right)$ есть ограниченная функция на $\mathbb{R}$.
Итак, неравенство (4) установлено. Так как $$\left| \frac{ y^{\frac{4}{3}} }{ \sqrt{ x^2 + y^2 } } \right| = \left| y \right| ^{\frac{1}{3}} \frac{ \left| y \right| }{ \sqrt{x^2 + y^2} } \leq \left| y \right| ^{\frac{1}{3}},$$ то $$y^{\frac{4}{3}} = o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ и, следовательно, $$\sqrt[3]{x^3 + y^4} = x + o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ т. е. функция $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$ дифференцируема в точке $\left( 0, 0 \right)$.
[свернуть]
Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение
Первый способ. Пусть функция дифференцируема в точке $\left( 0, 0 \right)$, тогда, согласно определению, существует числа $A$ и $B$ такие, что $$f \left( x, y \right) — f \left( 0, 0 \right) = Ax + By + o \left( \rho \right), \rho = \sqrt{x^2 + y^2},$$ где $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$, $f \left( 0, 0 \right) = 0$, $A = \frac{ \partial f \left( 0 , 0 \right) }{ \partial x }$, $B = \frac{ \partial f \left( 0, 0 \right) }{ \partial y } = 1$.
Поэтому $$\sqrt[3]{x^3 + y^3} = x + y + o \left( \sqrt{x^2 + y^2} \right).$$ Пусть $x = y > 0$, тогда $$\sqrt[3]{2x} = 2x + 0 \left( x \right)$$ или $\left( \sqrt[3]{2} — 2 \right) x = o \left( x \right)$ при $x \to 0$, что противоречит определению символа $o \left( x \right)$. Следовательно, функция $\sqrt[3]{x^3 + y^3}$ недифференцируема в точке $\left( 0, 0 \right)$. Второй способ. Если функция $f \left( x, y \right)$ дифференцируема в точке $\left( 0, 0 \right)$, то ее можно в некоторой окрестности этой точки, согласно теореме 1, представить в следующем виде: $$\sqrt[3]{x^3 + y^3} = x \varphi \left( x, y \right) + y \psi \left( x, y \right), \qquad (5)$$где функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ непрерывны в точке $\left( 0, 0 \right)$.
Пусть $k$ — произвольное число. Положим в (5) $y = kx$. Тогда $$\sqrt[3]{1 + k^3} = \varphi \left( x, kx \right) + k \psi \left( x, kx \right).$$ Переходя к пределу при $x \to 0$ и пользуясь непрерывностью функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ в точке $\left( 0, 0 \right)$, получаем, что при любом $k$ выполняется равенство $$\sqrt[3]{1 + k^3} + \varphi \left( 0, 0 \right) + k\psi \left( 0, 0 \right) = a + kb.$$
Это неверно, так как функция $\sqrt[3]{1 + k^3}$ не есть линейная функция (ее вторая производная по $k$ не обращается тождественно в нуль).
[свернуть]
Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.
Необходимое условие дифференцируемости функции в точке.
Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$
Доказательство
Пусть функция $ f \left( x \right)$ дифференцируема в точке $x^0$. Тогда найдутся такие числа $A_1, \dots, A_n$, что при $x \to x_1^0$ будет выполнено равенство (1). Пусть в этом равенстве $x_1 \neq x_1^0$, а $x_2 = x_2^0, \dots, x_n = x_n^0$. Тогда равенство (1) принимает следующий вид: $$f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) = \\ = A_1 \left( x_1 — x_1^0 \right) + o \left( \left| \Delta x_1 \right| \right), x_1 — x_1^0 = \Delta x_1 \to 0.$$ Следовательно, существует предел: $$A_1 = \lim\limits_{\Delta x_1 \to 0} \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0 , \dots, x_n^0 \right) }{ \Delta x_1 } = \frac{ \partial f }{ \partial x_1 } \left( x^0 \right).$$ Аналогично доказывается, что у функции $f \left( x \right)$ в точке $x^0$ существуют и остальные частные производные и что $$A_i = \frac{ \partial f }{ \partial x_i } \left( x^0 \right), i = \overline{ 2, n }.$$ Подставляя эти выражения в равенство (1), получаем (6).
[свернуть]
Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$
Достаточные условия дифференцируемости функции в точке.
Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.
Доказательство
Рассмотрим случай функции трех переменных. Общий случай рассматривается аналогично. Пусть функции $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial y } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial z } \left( x, y, z \right)$ определены в некотором шаре $S_\varepsilon \left( x^0, y^0, z^0 \right)$ и непрерывны в центре шара $\left( x^0, y^0, z^0 \right)$.
Запишем приращения функции в следующем виде: $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = f \left( x, y, z \right) — f \left( x^0, y, z \right) + f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) + \\ + f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right).$$ Пусть $x^0 < x$. Рассмотрим функцию одной переменной $\psi \left( t \right)$ при $t \in \left[ x^0, x \right]$. На этом отрезке функция $\psi \left( t \right)$ имеет производную $$\psi ‘ \left( t \right) = \frac{ \partial f }{ \partial x } \left( t, y, z \right).$$ Применяя формулу конечных приращений Лагранжа для функции $\psi \left( t \right)$ на отрезке $\left[ x^0, x \right]$, получаем $$\psi \left( x \right) — \psi \left( x^0 \right) = \psi ‘ \left( x^0 + \theta \left( x — x^0 \right) \right) \left( x — x^0 \right), 0 < \theta < 1.$$ Если подставить в эту формулу выражение для $\psi \left( t \right)$, то $$f \left( x, y, z \right) — f \left( x^0, y, z \right) = f_1 \left( x, y, z \right) \left( x — x^0 \right), \\ f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0 + \theta \left( x — x^0 \right), y, z \right). \qquad (7)$$ Так как частная производная $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$ непрерывна в точке $\left( x^0, y^0, z^0 \right)$, то существует $$\lim\limits_{ \left( x, y, z \right) \to \left( x^0, y^0, z^0 \right) } f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right).$$ Аналогично,$$f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) = f_2 \left( , y, z \right) \left( y — y^0 \right), \\ f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right) = f_3 \left( , y, z \right) \left( z — z^0 \right), \qquad (8)$$ где функции $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ имеют конечные пределы при $\left( x, y, z \right) \to \left( x^0, y^0, z^0 \right)$. Доопределяя эти функции в точке $\left( x^0, y^0, z^0 \right)$предельным значениями, получим, что функции $f_i \left( x, y, z \right)$, $i = \overline{1, 3}$, непрерывны в точке $\left( x^0, y^0, z^0 \right)$. Таким образом, $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = \left( x — x^0 \right) f_1 \left( x, y, z \right) + \left( y — y^0 \right) f_2 \left( x, y, z \right) + \left( z, z_0 \right) f_3 \left( x, y, z \right).$$ Из непрерывности функций $f_1 \left( x, y, z \right)$, $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ в точке $ \left( x^0, y^0, z^0 \right)$ и теоремы 1 следует дифференцируемость функции $f \left( x, y, z \right)$ в точке $\left( x^0, y^0, z^0 \right)$.
[свернуть]
Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.
Лысенко З. М. Конспект лекций по курсу математического анализа (I курс)
Тест
Лимит времени: 0
Навигация (только номера заданий)
0 из 2 заданий окончено
Вопросы:
1
2
Информация
Тест для проверки усвоения материала
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 2
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Рубрики
Нет рубрики0%
1
2
С ответом
С отметкой о просмотре
Задание 1 из 2
1.
Функция $ f \left( x \right) $ дифференцируема в точке $ x^0 $, если все частные производные $ \frac{ \partial f }{ \partial x_i } $, $ i = \overline{1, n} $ …
Правильно
Неправильно
Задание 2 из 2
2.
Функция $ f \left( x \right) $ имеет в точке $ x^0 $ все частные производные $ \frac{ \partial f }{ \partial x_i } \left( x^0 \right) $, $ i = \overline{1, n} $, и
$ f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) $ при $ x \to x^0 $, если в точке $ x^0 \in \mathbb{R}^n $ она?