5.2 Дифференцируемость и арифметические операции

Теорема. Пусть функции $f$ и $g$ определены на интервале $(a,b)$ и дифференцируемы в точке $x_0$. Тогда

  1. функция $f + g$ дифференцируема в точке $x_0$ и $$(f + g)’(x_0) = f’(x_0) + g’(x_0);$$
  2. функция $f \cdot g$ дифференцируема в точке $x_0$ и $$(f \cdot g)’(x_0) = f’(x_0)g(x_0) + f (x_0)g’(x_0);$$
  3. если $g(x) \neq 0 (x \in (a,b))$, то функция $\dfrac{f}{g}$ дифференцируема в точке $x_0$ и $$(\dfrac{f}{g})’ = \dfrac{f’(x_0)g(x_0) — f (x_0)g’(x_0)}{g^2(x_0)}.$$

Утверждение $a)$ очевидно. Докажем $b)$. Имеем $$\dfrac{(f \cdot g)(x) — (f \cdot g)(x_0)}{x-x_0} = \dfrac{f(x)g(x) — f(x_0)g(x_0)}{x-x_0} =$$ $$= \dfrac{f(x)g(x) — f(x_0)g(x) + f(x_0)g(x) + f(x_0)g(x_0)}{x-x_0} =$$ $$ = \dfrac{f(x) — f(x_0)}{x-x_0}\cdot g(x) + f(x_0)\dfrac{g(x) — g(x_0)}{x-x_0}.$$ Используя непрерывность функции $g$ в точке $x_0$, которая следует из дифференцируемости, переходя к пределу при $x \to x_0$, получаем $b)$.

Для доказательства $c)$ рассмотрим сначала случай $f(x) \equiv 1$. Тогда $$\dfrac{\dfrac{1}{g(x)} — \dfrac{1}{g(x_0)}}{x — x_0} = — \dfrac {g(x)-g(x_0)}{x-x_0} \cdot \dfrac1{g(x)g(x_0)} \to -\dfrac{g’(x_0)}{g^2(x_0)} (x \to x_0).$$

Замечание. Непосредственно из определения производной следует, что $(c \cdot f)’(x_0) = c\cdot f’(x_0)$, где $c$ – постоянная. Поэтому, используя часть $a)$ доказанной теоремы, получаем, что операция дифференцирования является линейной операцией, т. е. производная линейной комбинации двух дифференцируемых функций равна линейной комбинации их производных – $$(\alpha\cdot f + \beta\cdot g)’(x_0) = \alpha\cdot f’(x_0) + \beta\cdot g’(x_0),$$ где $\alpha$ и $\beta$ – постоянные.

Примеры решения задач

  1. Найти производную функции $ f(x) = 3x^2 + 7x + 3$ в точке $x_0 = 3$.
    Решение

    Пользуясь вышеописанными формулами и таблицей производных получаем: $$f’(x) = (3x^2 + 7x + 3)’ = (3x^2)’ + (7x)’ + (3)’ = 6x + 7 + 0 = 6x + 7.$$ Тогда: $$f’(x_0) = 25$$

  2. Найти производную функции $f(x) = e^x\cos x$
    Решение

    Вновь воспользуемся вышеописанными формулами и таблицей производных, вследствие чего получим результат: $$f’(x) = (e^x\cos x)’ = (e^x)’\cdot\cos x + e^x\cdot(\cos x)’ = e^x\cos x — e^x\sin x$$

  3. Найти производную функции $f(x) = \dfrac {\arccos x}{\sqrt x}$.
    Решение

    $$f’(x) = (\dfrac {\arccos x}{\sqrt x})’ = \dfrac{(\arccos x)’\cdot\sqrt x — (\sqrt x)’\cdot\arccos x}{(\sqrt x)^2} =$$ $$= \dfrac{-\dfrac{\sqrt x}{\sqrt{1 — x^2}} — \dfrac{\arccos x}{2\sqrt x}}{x}$$

Литература

  1. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 111-112.
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.288-291.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — С. 199-202.
  4. Б.П.Демидович. Сборник задач и упражнений по математическому анализу, 13-ое издание, Московского университета, 1997, с. 96-97

Дифференцируемость и арифметические операции

Тест для проверки собственных знаний по данной теме.

12.3 Частные производные

Сначала рассмотрим пример. Пусть $ \DeclareMathOperator{\tg}{tg} f(x,y)=x^{2}+y^{2}$. Производной по $x$ называется $$\frac{\partial f}{\partial x}(x,y)=2x,$$
а производной по $y$ – $$\frac{\partial f}{\partial y}(x,y)=2y.$$
Полной производной, или дифференциалом, согласно примеру $1$, будет $A(h,k)=2xh+2yk$, $A = \mathrm{d}f(x,y).$

Определение. Пусть $f\colon E\to \mathbb{R}$, где открытое множество $E\subset{\mathbb{R}^{n}}$, и точка $x_{0}\in{E}$. Если существует $$\lim_{t \rightarrow 0}\frac{f(x_{0}+te_{i})-f(x_{0})}{t},$$ то этот предел называется $i$-й частной производной функции $f$ по переменной $x^{i}$ в точке $x_{0}$ и обозначается одним из символов $\frac{\partial f}{\partial x^{i}}(x_{0}),$ ${f}’_{x^{i}}(x_{0}),$ $\mathrm{D}_{i}f(x_0),$ ${f}’_{i}(x_{0}).$

В этом определении $e_{i}$ – $i$-й координатный вектор. Все его координаты – нули, за исключением $i$-й, равной $1$, а $t \neq 0$ пробегает действительные значения, близкие к нулю, так, чтобы точка $x_{0} + te_{i}$ оставалась во множестве $E.$

Можно записать $$\frac{\partial f }{\partial x^{i}}(x_0)=\lim_{t \rightarrow 0}\frac{f(x_{0}^{1},\ldots, x_{0}^{i}+t,\ldots, x_{0}^{n})-f(x_{0}^{1},\ldots, x_{0}^{n})}{t}.$$
Эта запись показывает, что частную производную можно рассматривать как производную функции $f$ по переменной $x_{i}$ при фиксированных значениях всех остальных переменных. Точнее, $\frac{\partial f}{\partial x^{i}}(x_{0})$ есть производная функции одного переменного $g(\xi)=f(x_{0}^{1},\ldots, x_{0}^{i-1}, \xi, x_{0}^{i+1},\ldots, x_{0}^{n})$ в точке $\xi = x_{0}^{i}.$

Частная производная – это число, в отличие от производной $f'(x_{0}),$ которая называется также полной производной. Полная производная является линейной формой.

Теорема 4. Пусть $f$ – действительная функция, заданная на открытом множестве $E\subset{\mathbb{R}^{n}}$. Если функция $f$ дифференцируема в точке $x_{0}\in{E}$, то в этой точке у нее существуют частные производные по всем переменным. При этом справедливо равенство $$f(x_{0}+h)-f(x_{0})=\frac{\partial f}{\partial x^{1}}(x_{0})h^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})h^{n}+\bar{o}(\left | h \right |). \quad (12.11)$$

Пусть $A={\mathrm{d} f}(x_{0})$. Тогда, по определению дифференцируемости, $$f(x_{0}+h)-f(x_{0})= A(h)+\bar{o}(\left | h \right |). \quad (12.12)$$
Положим $h = te_{i}$, где достаточно малое $t\neq 0.$ Тогда получим $$f(x_{0}+te_{i})−f(x_{0})=tA(e_{i})+\bar{o}(\left | t \right |).$$
Отсюда следует, что $$\frac{f(x_{0}+te_{i})-f(x_{0})}{t}\to A(e_{i})\quad(t\to 0).$$
Тем самым мы доказали, что существует $\frac{\partial f}{\partial x^{i}}(x_{0})=A(e_{i})$. Заметим, что $$A(h) = A(e_{1})h^{1}+\ldots+A(e_{n})h^{n},$$ и поэтому из $(12.12)$ следует $(12.11).$

При доказательстве теоремы нами установлено соотношение $$\frac{\partial f}{\partial x^{i}}(x_{0})=\mathrm{d}f(x_{0})e_{i}\quad(i=1,\ldots,n).$$
В правой его части записано значение линейной формы $\mathrm{d}f(x_{0})$ на $i$-м базисном векторе $e_{i}$.

Формулой $$\mathrm{d}f(x_{0})h=\frac{\partial f}{\partial x^{1}}(x_{0})h^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})h^{n}\quad(h\in \mathbb{R}^{n})$$ описывается дифференциал $\mathrm{d}f(x_{0})$ как линейная форма. Заметим, что из этой формулы вытекает равенство $$\mathrm{d}f(x_{0})=\frac{\partial f}{\partial x^{1}}(x_{0})\pi^{1}+\ldots+\frac{\partial f}{\partial x^{n}}(x_{0})\pi^{n},$$ где $\pi^{i}(h)$ – $i$-я проекция.

Таким образом, частные производные – это координаты полной производной или дифференциала в стандартном базисе $\pi^{1}, \ldots, \pi^{n}$ сопряженного пространства.

Пример 1. Пусть $f(x, y)=x^{2}+y^{2}.$ Как было установлено выше, частные производные этой функции по переменным $x$ и $y$ соответственно равны $2x$ и $2y.$ Вычислим значение дифференциала этой функции в точке $(1, 2)$ на векторе $(−3, 5).$ Имеем
$$\frac{\partial f}{\partial x}(1, 2)=2,\quad \frac{\partial f}{\partial y}(1, 2)=4,\quad \mathrm{d}f(1, 2)(−3, 5) = 2(−3)+4·5=14.$$
Запишем разложение $\mathrm{d}f(1, 2)$ по базисным линейным формам $\pi^{1},$ $\pi^{2}:$
$$\mathrm{d}f(1, 2) = 2\pi^{1} + 4\pi^{2}.$$
Это выражение полностью описывает дифференциал.

Пример 2. Рассмотрим функцию $f(x) = \left | x \right |$, $x\in \mathbb{R}^{n}$. Покажем, что в начале координат у нее нет ни одной частной производной. Действительно, например, $f(x^{1}, 0, \ldots, 0) = \left | x^{1} \right |$, но, как хорошо известно, у этой функции нет производной в нуле по переменной $x^{1}.$ Аналогично показываем, что в начале координат нет частных производных по остальным переменным.

Рассмотрим геометрический смысл частной производной на примере функции $f(x, y)$ двух переменных. Сечением графика функции $f(x, y)$ плоскостью $y = y_{0}$ есть некоторая кривая – график функции одного переменного $f(x, y_{0})$. Касательная к этому графику в точке $x = x_{0}$ образует некоторый угол $\alpha$ с положительным направлением оси $Ox$. Тангенс этого угла $\tg \alpha$ и есть частная производная функции $f(x, y)$ по переменной $x$ в точке $(x_{0}, y_{0})$, т. е. $\tg \alpha = \frac{\partial f}{\partial x}(x_{0}, y_{0})$.

Частные производные в точке $(x_{0}, y_{0})$ характеризуют поведение функции вблизи точки $(x_{0}, y_{0})$ вдоль прямых, параллельных координатным осям. В случае $n \geq 2$ из существования частных производных не следует дифференцируемость функции. Например, пусть функция $f(x, y) = 1$, если $xy = 0$, и $f(x, y) = 0$ во всех остальных точках $(x, y)$. Тогда очевидно, что $\frac{\partial f}{\partial x}(0, 0)=\frac{\partial f}{\partial y}(0, 0)=0$, но, в то же время, функция $f$ разрывна в точке $(0, 0)$ и, тем более, она не является дифференцируемой в этой точке.

Пример 1. Пусть
$$f(x, y)=\left\{\begin{matrix}\frac{xy}{x^{2}+y^{2}}, \quad x^{2}+y^{2}>0, &\\0, \quad x^{2}+y^{2}=0.\end{matrix}\right.$$
Если $x^2 + y^2 > 0$, то
$$\frac{\partial f}{\partial x}(x, y)=y\frac{x^2+y^2-2x^2}{(x^2+y^2)^2}=y\frac{y^2-x^2}{(x^2+y^2)^2},\quad \frac{\partial f}{\partial y}(x, y)=x\frac{x^2-y^2}{(x^2+y^2)^2}.$$
Вычислим частные производные функции $f$ в начале координат. Поскольку $f(x, 0) = 0$, то $\frac{\partial f}{\partial x}(0, 0) = 0$. Аналогично $\frac{\partial f}{\partial y}(0, 0) = 0$. Таким образом, частные производные функции $f$ существуют во всех точках плоскости. Однако эта функция разрывна в начале координат, поскольку на прямой $x = y \neq 0$ справедливо равенство $f(x, x) = \frac{1}{2}$. Это означает, что ее предел не равен значению функции в точке $(0, 0)$.
Итак, функция $f$ разрывна в начале координат, так что она не является дифференцируемой в точке $(0, 0)$.

Пример 2. Функция
$$f(x, y)=\left\{\begin{matrix}\frac{xy}{\sqrt{x^{2}+y^{2}}}, \quad x^{2}+y^{2}>0, &\\0, \quad x^{2}+y^{2}=0.\end{matrix}\right.$$
как было показано ранее, непрерывна во всех точках плоскости. Легко видеть, что в каждой точке плоскости она имеет частные производные, однако, как было показано выше, в начале координат не является дифференцируемой.

Определение. Пусть действительная функция $f$ определена на открытом множестве $E\subset\mathbb{R}^{n}$. Предположим, что в каждой точке $x \in E$ существует частная производная $\frac{\partial f}{\partial x^{i}}(x)$. Тогда получаем функцию $x \to\frac{\partial f}{\partial x^{i}}(x)$, определенную на множестве $E$, которая обозначается $\frac{\partial f}{\partial x^{i}}$ и называется $i$-й частной производной.

Определение. Если функция $f$ в каждой точке $x$ множества $E$ имеет все частные производные $\frac{\partial f}{\partial x^{i}}$ и они непрерывны на множестве $E$ то функция $f$ называется непрерывно дифференцируемой на этом множестве. Через $C^1(E)$ обозначается класс всех непрерывно дифференцируемых на множестве $E$ функций.

Определение. Если функция $f$ дифференцируема в каждой точке множества $E$, то говорят, что $f$ дифференцируема на множестве $E$.

Теорема. Пусть функция $f$ принадлежит классу $C^{1}(E)$, где открытое множество $E\subset\mathbb{R}^{n}$. Тогда $f$ дифференцируема на $E$.

Фиксируем $x_{0} \in E$. Поскольку множество $E$ открыто, то существует шар $U_0$ с центром в этой точке, целиком содержащийся в $E$. Пусть $r$ – радиус этого шара и вектор $h$ имеет длину $\left | h \right | < r$. Обозначим $x_{j} = x_{0} + h^{1}e_{1} + \ldots+ h^{j}e_{j}\quad (j = 1, \ldots, n)$. Ясно, что $x_{n} = x_{0} + h$. Заметим, что все $x_{j}$ принадлежат шару $U_0$. Действительно,
$$\left | x_0-x_j \right |=\sqrt{\sum_{i=1}^{j}(h^{i})^{2}}\leq \left | h \right |<r.$$
Поскольку шар – выпуклое множество, то каждый из отрезков $[x_{j−1}, x_{j}]$ содержится в ${U_0}.$ Действительно, этот отрезок – это множество точек $x = (1 − t)x_{j−1} + tx_{j}$, где $0 \leq t \leq 1$, и мы получаем $$\left | x_0-x_j \right |=(1-t)\left | x_0-x_{j-1} \right |+t\left | x_0-x_{j} \right |<r.$$
Воспользуемся равенством
$$f(x_0 + h) − f(x_0) =\sum_{j=1}^{n}[f(x_j) − f(x_{j−1})].\quad(12.13)$$
Рассмотрим отдельно каждое из слагаемых в правой части. При фиксированном $j$ положим
$g(t) = f(x_{j−1} + te_{j})\quad (0 \leq t \leq h^j).$
По определению частной производной имеем
$$g'(t)=\frac{\partial f}{\partial x^{j}}(x_{j-1}+te_j).$$
По формуле Лагранжа получаем
$$f(x_j)-f(x_{j-1})=g(h^j)-g(0)=g'(\tau_j)h^j=\frac{\partial f}{\partial x^j}(\xi_j)h^j,$$ где $\xi_j=x_{j-1}+\tau_{j}e_{j}$ – некоторая точка отрезка, соединяющего $x_{j−1}$ и $x_j$. Имеем $\left |x_{0} − \xi_{j}\right | \leq \left |h \right |$. Обозначим
$$\alpha_j(h)=\frac{\partial f}{\partial x^j}(x_0)-\frac{\partial f}{\partial x^j}(\xi_j).$$
По условию все частные производные непрерывны в точке $x_0$ и поэтому
$$\lim_{x\to 0}\alpha_j(h)=0 \quad(j=1,\ldots, n).\quad(12.14)$$
В силу $(12.13)$ имеем
$$f(x_0+h)-f(x_0)=\sum_{j=1}^{n}\frac{\partial f}{\partial x^{j}}(\xi_j)h^j=$$ $$=\sum_{j=1}^{n}\frac{\partial f}{\partial x^{j}}(x_0)h^j-\sum_{j=1}^{n}\alpha_j(h)h^{j}=A(h)+\rho(h), $$
где
$$A(h)=\sum_{j=1}^{n}\frac{\partial f}{\partial x^j}(x_0)h^j,\quad \rho(h)=-\sum_{j=1}^{n}\alpha_j(h)h^j.$$
Итак, $A$ является линейной формой аргумента $h$, а
$$\left | \rho(h) \right |\leq\left | h \right |\sum_{j=1}^{n}\left | \alpha_{j}(h) \right |.$$
Поэтому, в силу соотношений $(12.14)$ получаем, что $\frac{\rho(h)}{\left | h \right |}\to 0$ при $h \to 0$.
Согласно определению дифференцируемости, теорема доказана.

Замечание. Из доказательства видно, что если функция имеет частные производные в некоторой окрестности точки $x_0$ и в этой точке все они непрерывны, то функция дифференцируема в точке $x_0.$

Следствие. Каждая функция класса $C^1$ непрерывна.

Замечание. Непрерывность частных производных – только достаточное условие дифференцируемости. Оно не является необходимым.

Пример. Пусть
$$f(x)=\left\{\begin{matrix}
\left | x \right | ^2\sin \frac{1}{\left | x \right |^2}, \quad x\neq0,
&\\ 0, \quad x=0.
\end{matrix}\right.$$
Найдем частные производные
$$\frac{\partial f}{\partial x^{i}}(x)=2x^{i}\sin \frac{1}{\left | x \right |^2}-\frac{2x^i}{\left | x \right |^2}\cos \frac{1}{\left | x \right |^2}\quad(x \neq 0).$$
При $x = 0$ наша функция дифференцируема, т. к. $f(h) − f(0) = f(h) =\bar{o}(\left | h \right |)$. Однако, как легко видеть, все частные производные разрывны в точке $x = 0$.

Примеры решения задач

  1. Найти частные производные первого порядка функции $f(x,y)=\sin \frac{x}{y} \cos \frac{y}{x}:$

    Решение

    Область определена функции $\mathbb{R}.$ Фиксируя переменную $y$, находим
    $$\frac{\partial f}{\partial x}=\frac{y^{2}\sin \frac{x}{y}\sin \frac{y}{x} + x^{2}\cos \frac{x}{y}\cos \frac{y}{x}}{x^{2}y}.$$
    Фиксируя переменную $x$, получаем
    $$\frac{\partial f}{\partial y}=\frac{-y^{2}\sin \frac{x}{y}\sin \frac{y}{x}-x^2\cos \frac{x}{y}\cos \frac{x}{y}}{xy^{2}}.$$

  2. Найти дифференциал функции $f(x,y)=\frac{y}{x}+\frac{x}{y}$, если

    Решение

    Найдем частные производные:
    $$\frac{\partial f}{\partial x}=-\frac{y}{x^2}+\frac{1}{y},$$
    $$\frac{\partial f}{\partial y}=\frac{1}{x}-\frac{x}{y^2}.$$
    Теперь подставляя полученные частные производные в формулу: $\mathrm{d}f=f’_{x}\mathrm{d}x+f’_{y}\mathrm{d}y$, получаем:
    $$\mathrm{d}f=(-\frac{y}{x^2}+\frac{1}{y})\mathrm{d}x+(\frac{1}{x}-\frac{x}{y^2})\mathrm{d}y.$$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: страницы 241-255.
  2. Кудрявцев Л. Д. Курс математического анализа: страницы 240-253

Частные производные

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме

5.1 Дифференцируемость и производная

$\DeclareMathOperator{\tg}{tg} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\sgn}{sgn}$ Определение 1. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Если существует конечный предел $\displaystyle  \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной функции $f$ в точке $x_0$ и обозначается $f^\prime(x_0)$, или $\displaystyle \frac{df}{dx}(x_0),$ $Df(x_0).$

Определение 2. Пусть функция $f$ определена на интервале $(a, b)$ и точка $x_0 ∈ (a, b).$ Функцию $f$ будем называть дифференцируемой в точке $x_0,$ если существует такая постоянная $A$ (зависящая от $x_0$ и не зависящая от $x$), что справедливо равенство: $$f(x) − f (x_0) = A (x − x_0) + r(x), $$где $r(x) = \overline{o} (x − x_0) \: \: \: (x \to x_0).$

Короче определение дифференцируемости можно записать в следующем виде: $$f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0) \: \: \: (x \to x_0).$$
Покажем, что эти два определения эквивалентны в том смысле, что дифференцируемость функции равносильна существованию производной.

Теорема. Функция $f$ дифференцируема в точке $x_0 ∈ (a, b)$ тогда и только тогда, когда у $f$ существует производная в точке $x_0.$

Пусть $f$ дифференцируема в точке $x_0.$ Это означает, что $f(x) − f (x_0) = A (x − x_0) + \overline{o} (x − x_0),$ где $A$ не зависит от $x$. Отсюда получаем:
$$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = A+\frac{\overline{o} (x − x_0)}{x-x_0}.$$
Тогда, учитывая определение символа $\overline{o}$, имеем
$$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=A+\lim_{x\to x_0} \frac{\overline{o} (x − x_0)}{(x − x_0)} =A$$ т. е. существует $f^\prime(x_0) = A.$
Обратно, если существует $$\displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f^\prime(x_0),$$ то $$ \displaystyle \frac{f(x)-f(x_0)}{x-x_0} + f^\prime(x_0) = r_1(x),$$ где $r_1(x) \to 0 (x \to x_0)$. Отсюда следует, что $$ f(x) — f(x_0) = f^\prime(x_0)(x-x_0)+r_1(x)(x-x_0).$$ Обозначим $r(x)=r_1(x)(x-x_0).$ Тогда $r(x)=\overline{o}(x-x_0),$ т. е. $$ f(x) − f (x_0) = f^\prime(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0), $$ а это и означает, что $f$ дифференцируема в точке $x_0$, причем $A= f^\prime(x_0).$

Итак, условие дифференцируемости равносильно наличию производной. Смысл дифференцируемости состоит в том, что в некоторой окрестности точки $x_0$ функция $f$ представима в виде линейной функции $l(x)= f (x_0)+f (x_0) f^\prime(x-x_0)$ приближенно с точностью до величины бесконечно малой более высокого порядка, чем $(x-x_0) $ при $x\to x_0.$

Связь между дифференцируемостью и непрерывностью устанавливает следующая

Теорема. Если функция $f$ дифференцируема в точке $x_0$, то она непрерывна в этой точке.

Дифференцируемость $f$ означает, что
$$ f(x) − f (x_0) = A(x_0)(x-x_0)+\overline{o}(x-x_0) \: \: \: (x\to x_0). $$
Отсюда следует, что $\displaystyle \lim_{x\to x_0} (f(x)-f(x_0)) = 0$, т. е. $\displaystyle \lim_{x\to x_0} f(x)=f(x_0)$, и тем самым теорема доказана.

Обратное утверждение неверно. Именно из непрерывности функции $f$ не следует ее дифференцируемость. Примером может служить функция $f(x)=|x|,$ непрерывная в точке $x_0 = 0$, для которой выражение $$\displaystyle \frac{f(x)-f(x_0)}{x-x_0} = \frac{|x|}{x} = \sign x $$ не имеет предела $x\to 0$ и, следовательно, функция $f$ не имеет производной в точке $x_0 = 0$. Значит, $ f$ не является дифференцируемой в нуле.

Итак, непрерывность – это необходимое, но не достаточное условие дифференцируемости. Другими словами, если функция разрывна в точке $x_0$, то она недифференцируема в этой точке. Обратное неверно.

С геометрической точки зрения производная $f^\prime(x_0)$ представляет собой тангенс угла наклона касательной к графику функции $y = f(x)$ в точке $M_0(x_0, f (x_0))$. При этом касательной к графику функции $f$ в точке $M_0$ называется предельное положение секущей $M_0M$ при стремлении точки $M (x, f(x))$ вдоль кривой $y = f(x)$ к точке $M_0$. В самом деле, если функция  $f$ дифференцируема в точке $x_0$, то при стремлении $M$ к $M_0$ вдоль кривой $y = f(x)$ секущая $M_0M$ имеет тангенс угла наклона, равный $$ \displaystyle \tg\alpha(x) = \frac{f(x)-f(x_0)}{x-x_0}, $$ и при $ x \rightarrow x_0 $ точка $M$ стремится к $M_0$ вдоль кривой $y = f(x)$. Так как $$\displaystyle  \frac{f(x)-f(x_0)}{x-x_0} \to f^\prime(x_0)  \: \: \: (x\to x_0), $$ то $\tg\alpha(x) \to f^\prime(x_0) $ при $x\to x_0$, т. е. секущая стремится занять некоторое предельное положение, тангенс угла наклона $\alpha_0$ которого равен $f^\prime(x_0)$.Отсюда получаем уравнение касательной к графику дифференцируемой в точке $x_0$ функции $y = f(x):$ $$k(x)=f(x_0)+f^\prime(x_0) (x-x_0).$$

Примеры решения задач

  1. Найти производную $f(x) = \sin x $ в точке $x_0 = 0.$
    Решение

    Пример можно легко решить, пользуясь определением производной, а так же первым замечательным пределом:
    $ \displaystyle \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}= \lim_{x\to 0} \frac{\sin x — \sin 0}{x-0}=\lim_{x\to 0} \frac{\sin x }{x}=1.$

  2. Пусть $f(x) = x^{2}$ Тогда производная $f^\prime(x_0)$ равна?
    Решение

    $\displaystyle f^\prime(x_0) = \lim_{x\to x_0} \frac{x^2-x^2_0}{x-x_0} = \lim_{x\to x_0} \frac{(x-x_0)(x+x_0)}{x-x_0}=$
    $\displaystyle = \lim_{x\to x_0} (x+x_0) = 2x_0$

  3. Пусть $f(x) = \left|x \right |$ и если $x_0 \neq 0$ существует ли $f^\prime(x_0)$?
    Решение

    $f^\prime(x_0) = \sgn x_0$, где $\sgn$ обозначает функцию знака. А если $x_0 = 0$ $f^\prime_+(x_0)=1,$ $f^\prime_-(x_0)=-1,$ а следовательно $f^\prime(x_0)$ не существует.

  4. Найдите уравнение касательной к графику функции $y=e^{2x-3}$ в точке $x_0 = 5,$ а также угол наклона касательной в этой точке.
    Решение

    Известно, что уравнение касательной в точке имеет вид $l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right),$ причём ${f}’\left(x_{0}\right)=\mathrm{tg}\alpha,$ где $\alpha$ — угол наклона касательной.
    Находим значение касательной в точке 5, получаем ${f}^\prime\left(x\right)=2e^{2x-3},$ а в точке $x_{0}=5: \, {f}^\prime\left(5\right)=2e^{7} \Rightarrow$ $l = e^{7}+2e^{7}\left(x-5\right) =$
    $ -9e^{7}+2e^{7}x$, $\alpha = \mathrm{arctg}\left(2e^{7}\right).$

  5. Найдите по определению $\sin x.$ на множестве $\mathbb{R}$
    Решение

    Воспользуемся определением производной $(\sin x)^\prime:$
    $
    (\sin x)^\prime = \displaystyle \lim_{\Delta x\to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} = \\
    = \displaystyle \frac{2\sin \frac{\Delta x}{2}\cdot \cos(x+\frac{\Delta x}{2})}{\Delta x} = \\
    = \displaystyle \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos(x+\frac{\Delta x}{2})
    $
    Теперь сделаем подстановку $ \displaystyle \frac{\Delta x}{2} = t$ . При $\Delta x \to 0, $ $t \to 0.$ Применим первый замечательный предел:
    $ \displaystyle \lim_{\Delta x\to 0} \frac { \sin \frac{\Delta x}2}{\frac{\Delta x}2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$
    Сделаем такую же подстановку $\displaystyle \frac{\Delta x}{2} = t$ и используем свойство непрерывности:
    $\displaystyle \lim_{\Delta x\to 0} \left ( \cos x + \frac{\Delta x}{2} \right) = \lim_{t\to 0} \cos (x+t)= \cos x.$

Смотрите также

  1. Тер-Крикоров А. М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М.И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — с. 123-133.
  2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — с. 186-214.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.271-280.

Дифференцируемость и производная

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Дифференцируемость и производная».

Вычисление криволинейных интегралов первого рода

Пусть дана гладкая кривая \Gamma, которая задана уравнением в координатной форме, то есть \Gamma =\left \{ x = x(t), y = y(t), z = z(t), \alpha \leq t\leq \beta \right \} и пусть функция f(x, y, z) непрерывна вдоль кривой \Gamma. Тогда существует криволинейный интеграл первого рода \int_{\Gamma}f(x, y, z)ds и выполняется равенство:
$${ \underset {\Gamma}{ \int }}f(x, y, z)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(x(t), y(t), z(t))\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}\,dt.$$

Замечания:

  • Если \Gamma =\left \{ y = \psi(x), \alpha \leq x\leq \beta \right \} и y = \psi(x) непрерывно дифференцируема на отрезке [a,b] и существует криволинейный интеграл первого рода \int_{\Gamma}f(x, y)ds, то выполняется равенство:
    $${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(x, \psi(x))\sqrt{1 +(\psi'(x))^2}\,dx.$$
  • Если \Gamma =\left \{ x = \varphi  (y), \alpha \leq y\leq \beta \right \}, то
    $$ { \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\beta}{ \underset {\alpha}{ \int }} f(\varphi (y), y)\sqrt{1 +(\varphi'(y))^2}\,dy.$$

    [spoilergroup]

    Пример

    Вычислить криволинейный интеграл первого рода $$I = { \underset { \Gamma }{ \int } }(x+y)\,ds,$$
    где кривая \Gamma — граница треугольника с вершинами O(0;0), A(1;0), B(1;1).

    кривая4
    Решение

    Пусть I_1, I_2, I_3 — криволинейные интегралы первого рода от функции x+y по отрезкам OA, AB, BO. Отрезок AB задан уравнением x=1, 0\leq y\leq 1. Тогда
    $$I_2 = \overset {1}{ \underset {0}{ \int }}(y+1)\,dy = \frac{3}{2}.$$
    Отрезок BO задан уравнением y = x, 0\leq x\leq 1. Тогда
    $$I_3 = \overset {1}{ \underset {0}{ \int }}2x\sqrt{2}\,dx = \sqrt{2}.$$
    Отрезок AO задан уравнением y = 0, 0\leq x\leq 1. Тогда
    $$I_1= \overset {1}{ \underset {0}{ \int }}x\,dx = \frac{1}{2}.$$
    Отсюда следует, что I = I_1 + I_2 + I_3 = \sqrt{2} + \frac{3}{2} + \frac{1}{2} = 2 + \sqrt{2}.

    [свернуть]
    .
    [/spoilergroup]
  • В случае, если кривая \Gamma задана в полярной системе координат, то есть \Gamma = \left \{ \left. r = r(\varphi), \varphi_1\leq \varphi \leq \varphi _2 \right \} \right. и r(\varphi) непрерывно дифференцируема на отрезке [\varphi_1, \varphi_2], то выполняется равенство:
    $${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\varphi_2}{ \underset {\varphi_1}{ \int }} f(r(\varphi) \cos\varphi, r(\varphi) \sin\varphi)\sqrt{{r}^2(\varphi) + {(r'(\varphi))^2}}\,d\varphi.$$

    [spoilergroup]

    Пример

    Вычислить криволинейный интеграл первого рода \int_{\Gamma }\sqrt{x^2 + y^2}{\mathrm{d} s}, где кривая \Gamma задана уравнением (x^2+y^2)^{\frac{3}{2}} = a^2(x^2 - y^2).

    Решение

    Совершим переход к полярной системе координат, тогда x = r\cos\varphi, y = r\sin\varphi. В этом случае уравнение кривой можно записать в следующем виде: r = a^2\cos2\varphi, \varphi \in\Phi = \left \{ \varphi , -\frac{\pi }{4} \leq \varphi \leq \frac{\pi }{4}, \frac{3\pi }{4}\leq \varphi \leq \frac{5\pi }{4}\right \}.

    Для того, чтобы вычислить криволинейный интеграл первого рода воспользуемся равенством:
    $${ \underset {\Gamma}{ \int }}f(x, y)\,ds = \overset {\varphi_2}{ \underset {\varphi_1}{ \int }} f(r(\varphi) \cos\varphi, r(\varphi) \sin\varphi)\sqrt{{r}^2(\varphi) + {r’}^2(\varphi)}\,d\varphi.$$
    Поскольку,
    \(\sqrt{x^2 + y^2} = r = a^2\cos2\varphi\), \(\sqrt{r^2 + r’^2} = a^2\sqrt{1+3\sin^22\varphi }\),
    то
    \({ \underset {\Gamma}{ \int }}\sqrt{x^2 + y^2}\,ds = { \underset {\varphi\in\Phi}{ \int }}a^4\cos2\varphi\sqrt{1 + 3\sin^22\varphi}\,d\varphi = \)
    \(=\frac{2a^4}{2\sqrt{3}}\overset {\frac{\pi}{4}}{ \underset {-\frac{\pi}{4}}{ \int }}\sqrt{1 + 3\sin^22\varphi }\,d(\sqrt{3}\sin2\varphi) = 2a^4 + \frac{a^4}{\sqrt{3}}\ln(\sqrt{3}+2)\).

    [свернуть]

    [/spoilergroup]

Литература

Тест

Данный тест поможет Вам проверить уровень знаний по данной теме.


Таблица лучших: Криволинейные интегралы. Вычисление

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Дифференцируемость функции в точке и существование частных производных

Дадим определение дифференцируемости функции в точке.
Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$.
Теорема 1. Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.

Доказательство

Пусть функция $f \left( x \right)$ дифференцируема в точке $x^0$. Тогда выполнено условие (1). Заметим, что равенство $\psi \left( x \right) = o \left( \rho \left( x, x^0 \right) \right)$ при $x \to x^0$ означает, что $\psi \left( x \right) = \varepsilon \left( x \right) \rho \left( x, x^0 \right)$, где $\lim_{x \to x^0} \varepsilon \left( x \right) = 0$.
Тогда $$\psi \left( x \right) = \frac{ \varepsilon \left( x \right) }{ \rho \left( x, x^0 \right) } \sum\limits_{i = 1}^{n} \left( x_i — x_i^0 \right) ^2 = \\ = \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (3)$$
где $\varepsilon \left( x \right) = \varepsilon \left( x \right) \frac{ x_i — x_i^0 }{ \rho \left( x, x^0 \right) }$, $\lim_{ x \to x^0 } \varepsilon \left( x \right) = 0$, так как $0 \leq \frac{ \left| x_i — x_i^0 \right| }{ \rho \left( x, x^0 \right) } \leq 1$.
Доопределим функции $\varepsilon_i \left( x \right)$ в точке $x^0$ по непрерывности, полагая $\lim_{x \to x^0} \varepsilon_i \left( x \right) = \varepsilon_i \left( x^0 \right) = 0$.
Тогда из (1) и (3) получаем $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } A_i \left( x_i — x_i^0 \right) + \sum\limits_{ i = 1 }^{ n } \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } f_i \left( x \right) \left( x_i — x_i^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right).$$ Так как функции $\varepsilon_i \left( x \right)$ непрерывны в точке $x^0$, то и функции $f_i \left( x \right)$ непрерывны в точке $x^0$ и $f_i \left( x^0 \right) = A_i, i = \overline{1, n}$.
Пусть выполнено (2). Тогда, воспользовавшись непрерывностью функции $f_i \left( x \right)$ в точке $x^0$, положим $$A_i = f_i \left( x^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right), \lim\limits_{x \to x^0} \varepsilon_i \left( x \right) = 0.$$ Получаем $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right),$$ так как $$\frac{ \left| \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) \right| }{ \rho \left( x, x^0 \right) } \leq \sum\limits_{i = 1}^{n} \left| \varepsilon_i \left( x \right) \right| \to 0, x \to x^0. $$

[свернуть]

Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$.
Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$.
Указание. Воспользоваться результатом упр. 1.
Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение

Покажем, что существует число $C > 0$ такое, что для любых $x \in \mathbb{R}$ и $y \in \mathbb{R}$ справедливо неравенство $$\left| \sqrt[3]{x^3 + y^4} — x \right| \leq C \left| y \right| ^{\frac{4}{3}}. \qquad (4)$$ Если $y = 0$, то неравенство (4) справедливо при любом $C$. Пусть $y \ne 0$. Положим $t = xy^{- \frac{4}{3}}$. Тогда неравенство (4) эквивалентно неравенству $\left| \psi \left( t \right) \right| < C$, где $\psi \left( t \right) = \sqrt[3]{1 + t^3} — t$.
Так как функция $\psi \left( t \right)$ непрерывна на $\mathbb{R}$ и $\psi \left( t \right) \to 0$ при $t \to \infty$, то $\psi \left( x \right)$ есть ограниченная функция на $\mathbb{R}$.
Итак, неравенство (4) установлено. Так как $$\left| \frac{ y^{\frac{4}{3}} }{ \sqrt{ x^2 + y^2 } } \right| = \left| y \right| ^{\frac{1}{3}} \frac{ \left| y \right| }{ \sqrt{x^2 + y^2} } \leq \left| y \right| ^{\frac{1}{3}},$$ то $$y^{\frac{4}{3}} = o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ и, следовательно, $$\sqrt[3]{x^3 + y^4} = x + o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ т. е. функция $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$ дифференцируема в точке $\left( 0, 0 \right)$.

[свернуть]

Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение

Первый способ. Пусть функция дифференцируема в точке $\left( 0, 0 \right)$, тогда, согласно определению, существует числа $A$ и $B$ такие, что $$f \left( x, y \right) — f \left( 0, 0 \right) = Ax + By + o \left( \rho \right), \rho = \sqrt{x^2 + y^2},$$ где $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$, $f \left( 0, 0 \right) = 0$, $A = \frac{ \partial f \left( 0 , 0 \right) }{ \partial x }$, $B = \frac{ \partial f \left( 0, 0 \right) }{ \partial y } = 1$.
Поэтому $$\sqrt[3]{x^3 + y^3} = x + y + o \left( \sqrt{x^2 + y^2} \right).$$ Пусть $x = y > 0$, тогда $$\sqrt[3]{2x} = 2x + 0 \left( x \right)$$ или $\left( \sqrt[3]{2} — 2 \right) x = o \left( x \right)$ при $x \to 0$, что противоречит определению символа $o \left( x \right)$. Следовательно, функция $\sqrt[3]{x^3 + y^3}$ недифференцируема в точке $\left( 0, 0 \right)$.
Второй способ. Если функция $f \left( x, y \right)$ дифференцируема в точке $\left( 0, 0 \right)$, то ее можно в некоторой окрестности этой точки, согласно теореме 1, представить в следующем виде: $$\sqrt[3]{x^3 + y^3} = x \varphi \left( x, y \right) + y \psi \left( x, y \right), \qquad (5)$$где функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ непрерывны в точке $\left( 0, 0 \right)$.
Пусть $k$ — произвольное число. Положим в (5) $y = kx$. Тогда $$\sqrt[3]{1 + k^3} = \varphi \left( x, kx \right) + k \psi \left( x, kx \right).$$ Переходя к пределу при $x \to 0$ и пользуясь непрерывностью функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ в точке $\left( 0, 0 \right)$, получаем, что при любом $k$ выполняется равенство $$\sqrt[3]{1 + k^3} + \varphi \left( 0, 0 \right) + k\psi \left( 0, 0 \right) = a + kb.$$
Это неверно, так как функция $\sqrt[3]{1 + k^3}$ не есть линейная функция (ее вторая производная по $k$ не обращается тождественно в нуль).

[свернуть]

Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.

Необходимое условие дифференцируемости функции в точке.

Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$

Доказательство

Пусть функция $ f \left( x \right)$ дифференцируема в точке $x^0$. Тогда найдутся такие числа $A_1, \dots, A_n$, что при $x \to x_1^0$ будет выполнено равенство (1). Пусть в этом равенстве $x_1 \neq x_1^0$, а $x_2 = x_2^0, \dots, x_n = x_n^0$. Тогда равенство (1) принимает следующий вид: $$f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) = \\ = A_1 \left( x_1 — x_1^0 \right) + o \left( \left| \Delta x_1 \right| \right), x_1 — x_1^0 = \Delta x_1 \to 0.$$ Следовательно, существует предел: $$A_1 = \lim\limits_{\Delta x_1 \to 0} \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0 , \dots, x_n^0 \right) }{ \Delta x_1 } = \frac{ \partial f }{ \partial x_1 } \left( x^0 \right).$$ Аналогично доказывается, что у функции $f \left( x \right)$ в точке $x^0$ существуют и остальные частные производные и что $$A_i = \frac{ \partial f }{ \partial x_i } \left( x^0 \right), i = \overline{ 2, n }.$$ Подставляя эти выражения в равенство (1), получаем (6).

[свернуть]

Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$

Достаточные условия дифференцируемости функции в точке.

Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.

Доказательство

Рассмотрим случай функции трех переменных. Общий случай рассматривается аналогично. Пусть функции $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial y } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial z } \left( x, y, z \right)$ определены в некотором шаре $S_\varepsilon \left( x^0, y^0, z^0 \right)$ и непрерывны в центре шара $\left( x^0, y^0, z^0 \right)$.
Запишем приращения функции в следующем виде: $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = f \left( x, y, z \right) — f \left( x^0, y, z \right) + f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) + \\ + f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right).$$ Пусть $x^0 < x$. Рассмотрим функцию одной переменной $\psi \left( t \right)$ при $t \in \left[ x^0, x \right]$. На этом отрезке функция $\psi \left( t \right)$ имеет производную $$\psi ‘ \left( t \right) = \frac{ \partial f }{ \partial x } \left( t, y, z \right).$$ Применяя формулу конечных приращений Лагранжа для функции $\psi \left( t \right)$ на отрезке $\left[ x^0, x \right]$, получаем $$\psi \left( x \right) — \psi \left( x^0 \right) = \psi ‘ \left( x^0 + \theta \left( x — x^0 \right) \right) \left( x — x^0 \right), 0 < \theta < 1.$$ Если подставить в эту формулу выражение для $\psi \left( t \right)$, то $$f \left( x, y, z \right) — f \left( x^0, y, z \right) = f_1 \left( x, y, z \right) \left( x — x^0 \right), \\ f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0 + \theta \left( x — x^0 \right), y, z \right). \qquad (7)$$ Так как частная производная $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$ непрерывна в точке $\left( x^0, y^0, z^0 \right)$, то существует $$\lim\limits_{ \left( x, y, z \right) \to \left( x^0, y^0, z^0 \right) } f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right).$$ Аналогично,$$f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) = f_2 \left( , y, z \right) \left( y — y^0 \right), \\ f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right) = f_3 \left( , y, z \right) \left( z — z^0 \right), \qquad (8)$$ где функции $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ имеют конечные пределы при $\left( x, y, z \right) \to \left( x^0, y^0, z^0 \right)$. Доопределяя эти функции в точке $\left( x^0, y^0, z^0 \right)$предельным значениями, получим, что функции $f_i \left( x, y, z \right)$, $i = \overline{1, 3}$, непрерывны в точке $\left( x^0, y^0, z^0 \right)$. Таким образом, $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = \left( x — x^0 \right) f_1 \left( x, y, z \right) + \left( y — y^0 \right) f_2 \left( x, y, z \right) + \left( z, z_0 \right) f_3 \left( x, y, z \right).$$ Из непрерывности функций $f_1 \left( x, y, z \right)$, $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ в точке $ \left( x^0, y^0, z^0 \right)$ и теоремы 1 следует дифференцируемость функции $f \left( x, y, z \right)$ в точке $\left( x^0, y^0, z^0 \right)$.

[свернуть]

Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.

Список литературы

Тест

Тест для проверки усвоения материала