Processing math: 100%

M1518. Высоты тетраэдра пересекаются в одной точке

Задачи из журнала «Квант» (1995 год, выпуск 5)

Условие

Высоты тетраэдра пересекаются в одной точке. Докажите, что эта точка — основание одной из высот и три точки, делящие другие высоты в отношении 2:1, считая от вершин, лежат на одной сфере.

Доказательство

Пусть M — точка пересечения медиан треугольника ABC,P- точка пересечения высот тетраэдра, AA1 — высота тетраэдра из вершины A.

MA2||A3A1 и AA2:A2A1=2:1.

Угол MA2P — прямой, так что точка A2 лежит на сфере с диаметром MP. Аналогично рассматриваются остальные случаи.

Д.Терешин

M1515. О целых корнях суперпозиции трех квадратных трехчленов

Задача из журнала «Квант» (1995 год, выпуск 5)

Условие

Известно, что f(x),g(x),h(x) — квадратные трехчлены. Может ли уравнение f(g(h(x)))=0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Решение

Предположим, что числа 1, 2, 3, 4, 5, 6, 7 и 8 — корни уравнения f(g(h(x)))=0.

Если прямая x=a — ось параболы, задаваемой уравнением y=h(x), то h(x1)=h(x2) тогда и только тогда, когда x1+x2=2a.

Многочлен f(g(x)) имеет не более четырех корней, но числа h(1),h(2),,h(8) являются его корнями, следовательно, a=4.5 и h(4)=h(5),h(3)=h(6),h(2)=h(7),h(1)=h(8). Кроме того, мы попутно доказали, что числа h(1),h(2),h(3),h(4) образуют монотонную последовательность. Аналогично, рассматривая трехчлен f(x) и его корни g(h(1)),g(h(2)),g(h(3)),g(h(4)), получаем, что h(1)+h(4)=2b,h(2)+h(3)=2b, где прямая x=b — ось параболы, задаваемой уравнением y=g(x). Но из уравнения h(1)+h(4)=h(2)+h(3) для h(x)=Ax2+Bx+C следует, что A=0. Противоречие.

Ответ: уравнение f(g(h(x)))=0 не может иметь корни 1, 2, 3, 4, 5, 6, 7 и 8.

С.Токарев

M2103. Таблица с разными числами в строке и столбце

Условие

Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1,2,,n так, что в каждой строке и в каждом столбце все числа различны. Назовем клетку хорошей, если читсло в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которй во всех строках одинаковое количество хороших клеток?

Решение

Найдем общее количество хороших клеток. В первом столбце их n1 (все, кроме клетки с числом 1), во вторм их n2 (все, кроме клетки с числом 1 и 2) и т.д., в последнем столбце таких клкеток нет. Значит, всего их (n1)+(n2)++1=n(n1)2

Поэтому в каждой строке их должно быть по n12, следовательно, n должно быт ьнечетным.

1 n n1 2
2 1 n 3
3 2 1 4
n1 n2 n3 n
n n1 n2 1

Приведем пример расстановки при нечетном n. Пусть в первой строке записаны числа в порядке 1,n,n1,n2,,2

а каждая следующая строка является циклическим сдвигом предыдущей строки на 1 клетку (см.рис.). Очевидно, в любой строке и в любом столбце каждое из чисел 1,2,,n встречается по одному разу. Рассмотрим m-ю строку (m{1,2,,n}). В ее первых m клетках стоят числа 1,2,,m в обратном порядке, поэтому среди этих клеток ровно [m2] хороших. В ее последних nm клетках(т.е. в столбцах с номерами m+1,m+2,,n) стоят числа m+1,m+2,,n в обратном порядке, поэтому среди этих клеток ровно [nm2] хороших. Так как числа m и nm разной четности, то в m-й строке ровно [m2]+[nm2]=m2+nm212=n12 хороших клеток.

К.Чувилин

M1384. Невырожденность и выпуклость четырехугольников, связанных с центрами вписанного, описанного кругов и ортоцентром треугольника

Условие

ABC — неравнобедренный остроугольный треугольник; O и I — центры описанного и вписанного кругов, H — ортоцентр треугольника. Докажите, что четырехугольники AOIH, BOIH и COIH невырождены и среди них ровно два выпуклых.

Доказательство

Решению предпошлем легко доказываемое предположение:

В треугольнике биссектриса делит пополам угол между высотой и радиусом описанного круга, проведенным в ту же вершину.

Рис. 1 к задаче M1384

Докажем это предположение. Пусть BM — биссектриса угла ABC (рис. 1). Так как OB=OM, то OBM=OMB. Так как точка M — середина дуги AMC, то прямые OM и BD параллельны. Следовательно, DMB=BMO, отсюда OBM=DBM, что и требовалось доказать.

Решение задачи. Покажем вначале, что точки O и H не могут лежать на одной прямой с какой-либо из вершин треугольника (в частности, эти точки не могут совпадать). Действительно, в этом случае выходящие из вершины медиана и высота совпадают, и треугольник оказывается равнобедренным. Отсюда и из леммы уже следует, что AOIH, BOIH и COIH — невырожденные многоугольники (четырехугольники либо треугольники).

Рис. 2 к задаче M1384

Пусть прямая OH пересекает стороны AB и BC треугольника, BC>AB. Для завершения решения достаточно доказать, что точка I лежит внутри той же полуплоскости с границей OH, что и точка B (рис.2). Докажем это.

Обозначим BD=hs. Имеем: CD>AD. Восстановим перпендикуляр к середине отрезка AC, получаем: точка O принадлежит треугольнику BCD. Обозначим через E(K) точку пересечения прямой AI(CI) с прямой OH. Необходимо доказать, что точки на прямой расположены в следующем порядке: O,K,E,H, т.е что OKKH<OEEH. Но биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Отсюда и из леммы получаем: OKKH=COCH,OEEH=AOAH. Доказываемое утверждение можно теперь переписать так: AHAO<CHCO или CH>AH. Но поскольку CD>AD, то CH>AH. Отсюда и следует утверждение задачи.

Замечания:

  • Нетрудно показать, что прямая OH пересекает большую и меньшую стороны треугольника ABC. Значит, выпуклыми являются четырехугольники, соответствующие большему и меньшему его углам.
  • Задача допускает также и алгебраическое решение.

В.Сендеров

M1656. Оценка числа доминирующих вершин в вершинно-взвешенном графе

Условие

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше.)

Ответ: 25.

Решение

Учеников, которые учатся лучше большинства своих друзей, назовем хорошими. Пусть x — число хороших учеников, k — число друзей у каждого ученика. Лучший ученик класса является лучшим в k парах друзей, а любой другой хороший ученик — не менее, чем в [k/2]+1(k+1)/2 парах (здесь квадратные скобки обозначают целую часть числа). Поэтому хорошие ученики являются лучшими не менее чем в k+(x1)(k+1)/2 парах.
Это число не может превышать числа всех друзей в классе, равного 30k/2=15k. Отсюда k+(x1)(k+1)/215k или

x28kk+1+1 (1)

Заметим далее, что

k+1230x (2)

поскольку число учеников, лучше которых учится наихудший из хороших, не превышает 30.

Правая часть неравенства (1) возрастает с ростом k, а неравенство (2) равносильно условию

k592x (3)

Из (1) и (3) следует, что x28592x602x+1, или

x259x+8560 (4)

К задаче M1656

Наибольшим целым x, удовлетворяющим (4) и условию x30, является x=25. Итак, число хороших учеников не превышает 25, что можно проиллюстрировать на графике.

Покажем, что оно может равняться 25. Занумеруем учеников числами от 1 до 30 в порядке ухудшения успеваемости и расположим номера в таблице 6×5 так, как показано на рисунке.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

Пусть пара учеников является парой друзей, если их номера расположены одним из трех способов:

  1. в соседних строках и в разных столбцах;
  2. в одном столбце и один из номеров при этом находится в нижней строке;
  3. в верхней строке.

При этом, как нетрудно проверить все требуемые условия выполнены.

С.Токарев