M1518. Высоты тетраэдра пересекаются в одной точке

Задачи из журнала «Квант» (1995 год, выпуск 5)

Условие

Высоты тетраэдра пересекаются в одной точке. Докажите, что эта точка — основание одной из высот и три точки, делящие другие высоты в отношении 2:1, считая от вершин, лежат на одной сфере.

Доказательство

Пусть [latex]M[/latex] — точка пересечения медиан треугольника [latex]ABC, P[/latex]- точка пересечения высот тетраэдра, [latex]AA_{1}[/latex] — высота тетраэдра из вершины [latex]A[/latex].

[latex]MA_{2}||A_{3}A_{1}[/latex] и [latex]AA_{2}:A_{2}A_{1}=2:1[/latex].

Угол [latex]MA_{2}P[/latex] — прямой, так что точка [latex]A_{2}[/latex] лежит на сфере с диаметром [latex]MP[/latex]. Аналогично рассматриваются остальные случаи.

Д.Терешин

M1515. О целых корнях суперпозиции трех квадратных трехчленов

Задача из журнала «Квант» (1995 год, выпуск 5)

Условие

Известно, что [latex]f(x),g(x),h(x)[/latex] — квадратные трехчлены. Может ли уравнение [latex]f(g(h(x)))=0[/latex] иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Решение

Предположим, что числа 1, 2, 3, 4, 5, 6, 7 и 8 — корни уравнения [latex]f(g(h(x)))=0[/latex].

Если прямая [latex]x=a[/latex] — ось параболы, задаваемой уравнением [latex]y=h(x)[/latex], то [latex]h(x_{1})=h(x_{2})[/latex] тогда и только тогда, когда [latex]x_{1}+x_{2}=2a[/latex].

Многочлен [latex]f(g(x))[/latex] имеет не более четырех корней, но числа [latex]h(1), h(2),…, h(8)[/latex] являются его корнями, следовательно, [latex]a=4.5[/latex] и [latex]h(4)=h(5),h(3)=h(6),h(2)=h(7),h(1)=h(8)[/latex]. Кроме того, мы попутно доказали, что числа [latex]h(1),h(2),h(3),h(4)[/latex] образуют монотонную последовательность. Аналогично, рассматривая трехчлен [latex]f(x)[/latex] и его корни [latex]g(h(1)), g(h(2)), g(h(3)), g(h(4))[/latex], получаем, что [latex]h(1)+h(4)=2b, h(2)+h(3)=2b[/latex], где прямая [latex]x=b[/latex] — ось параболы, задаваемой уравнением [latex]y=g(x)[/latex]. Но из уравнения [latex]h(1)+h(4)=h(2)+h(3)[/latex] для [latex]h(x)=Ax^{2}+Bx+C[/latex] следует, что [latex]A=0[/latex]. Противоречие.

Ответ: уравнение [latex]f(g(h(x)))=0[/latex] не может иметь корни 1, 2, 3, 4, 5, 6, 7 и 8.

С.Токарев

M2103. Таблица с разными числами в строке и столбце

Условие

Дана таблица [latex]n\times n[/latex], столбцы которой пронумерованы числами от [latex]1[/latex] до [latex]n[/latex]. В клетки таблицы расставляются числа [latex]1,2,\cdots, n[/latex] так, что в каждой строке и в каждом столбце все числа различны. Назовем клетку хорошей, если читсло в ней больше номера столбца, в котором она находится. При каких [latex]n[/latex] существует расстановка, в которй во всех строках одинаковое количество хороших клеток?

Решение

Найдем общее количество хороших клеток. В первом столбце их [latex]n-1[/latex] (все, кроме клетки с числом 1), во вторм их [latex]n-2[/latex] (все, кроме клетки с числом 1 и 2) и т.д., в последнем столбце таких клкеток нет. Значит, всего их [latex](n-1)+(n-2)+\cdots +1=\frac{n(n-1)}{2}[/latex]

Поэтому в каждой строке их должно быть по [latex]\frac{n-1}{2}[/latex], следовательно, [latex]n[/latex] должно быт ьнечетным.

[latex]1[/latex] [latex]n[/latex] [latex]n-1[/latex] [latex]\cdots[/latex] [latex]2[/latex]
[latex]2[/latex] [latex]1[/latex] [latex]n[/latex] [latex]\cdots[/latex] [latex]3[/latex]
[latex]3[/latex] [latex]2[/latex] [latex]1[/latex] [latex]\cdots[/latex] [latex]4[/latex]
[latex]\vdots[/latex] [latex]\vdots[/latex] [latex]\vdots[/latex] [latex]\ddots[/latex] [latex]\vdots[/latex]
[latex]n-1[/latex] [latex]n-2[/latex] [latex]n-3[/latex] [latex]\cdots[/latex] [latex]n[/latex]
[latex]n[/latex] [latex]n-1[/latex] [latex]n-2[/latex] [latex]\cdots[/latex] [latex]1[/latex]

Приведем пример расстановки при нечетном [latex]n[/latex]. Пусть в первой строке записаны числа в порядке [latex]1,n,n-1,n-2,\cdots,2[/latex]

а каждая следующая строка является циклическим сдвигом предыдущей строки на 1 клетку (см.рис.). Очевидно, в любой строке и в любом столбце каждое из чисел [latex]1,2,\cdots,n[/latex] встречается по одному разу. Рассмотрим [latex]m[/latex]-ю строку ([latex]m\in \left \{ 1,2,\cdots,n \right \}[/latex]). В ее первых [latex]m[/latex] клетках стоят числа [latex]1,2,\cdots,m[/latex] в обратном порядке, поэтому среди этих клеток ровно [latex]\left [\frac{m}{2} \right][/latex] хороших. В ее последних [latex]n-m[/latex] клетках(т.е. в столбцах с номерами [latex]m+1,m+2,\cdots,n[/latex]) стоят числа [latex]m+1,m+2,\cdots,n[/latex] в обратном порядке, поэтому среди этих клеток ровно [latex]\left [\frac{n-m}{2} \right][/latex] хороших. Так как числа [latex]m[/latex] и [latex]n-m[/latex] разной четности, то в [latex]m[/latex]-й строке ровно [latex]\left [\frac{m}{2} \right]+\left [\frac{n-m}{2} \right]=\frac{m}{2}+\frac{n-m}{2}-\frac{1}{2}=\frac{n-1}{2}[/latex] хороших клеток.

К.Чувилин

M1384. Невырожденность и выпуклость четырехугольников, связанных с центрами вписанного, описанного кругов и ортоцентром треугольника

Условие

ABC — неравнобедренный остроугольный треугольник; O и I — центры описанного и вписанного кругов, H — ортоцентр треугольника. Докажите, что четырехугольники AOIH, BOIH и COIH невырождены и среди них ровно два выпуклых.

Доказательство

Решению предпошлем легко доказываемое предположение:

В треугольнике биссектриса делит пополам угол между высотой и радиусом описанного круга, проведенным в ту же вершину.

Рис. 1 к задаче M1384

Докажем это предположение. Пусть [latex]BM[/latex] — биссектриса угла [latex]ABC[/latex] (рис. 1). Так как [latex]OB=OM[/latex], то [latex]\angle OBM=\angle OMB[/latex]. Так как точка [latex]M[/latex] — середина дуги [latex]AMC[/latex], то прямые [latex]OM[/latex] и [latex]BD[/latex] параллельны. Следовательно, [latex]\angle DMB=\angle BMO[/latex], отсюда [latex]\angle OBM=\angle DBM[/latex], что и требовалось доказать.

Решение задачи. Покажем вначале, что точки [latex]O[/latex] и [latex]H[/latex] не могут лежать на одной прямой с какой-либо из вершин треугольника (в частности, эти точки не могут совпадать). Действительно, в этом случае выходящие из вершины медиана и высота совпадают, и треугольник оказывается равнобедренным. Отсюда и из леммы уже следует, что [latex]AOIH[/latex], [latex]BOIH[/latex] и [latex]COIH[/latex] — невырожденные многоугольники (четырехугольники либо треугольники).

Рис. 2 к задаче M1384

Пусть прямая [latex]OH[/latex] пересекает стороны [latex]AB[/latex] и [latex]BC[/latex] треугольника, [latex]BC> AB[/latex]. Для завершения решения достаточно доказать, что точка [latex]I[/latex] лежит внутри той же полуплоскости с границей [latex]OH[/latex], что и точка [latex]B[/latex] (рис.2). Докажем это.

Обозначим [latex]BD=h_{s}[/latex]. Имеем: [latex]CD>AD[/latex]. Восстановим перпендикуляр к середине отрезка [latex]AC[/latex], получаем: точка [latex]O[/latex] принадлежит треугольнику [latex]BCD[/latex]. Обозначим через [latex]E(K)[/latex] точку пересечения прямой [latex]AI(CI)[/latex] с прямой [latex]OH[/latex]. Необходимо доказать, что точки на прямой расположены в следующем порядке: [latex]O,K,E,H[/latex], т.е что [latex]\frac{OK}{KH}< \frac{OE}{EH}.[/latex] Но биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Отсюда и из леммы получаем: [latex]\frac{OK}{KH}=\frac{CO}{CH}, \frac{OE}{EH}=\frac{AO}{AH}.[/latex] Доказываемое утверждение можно теперь переписать так: [latex]\frac{AH}{AO}< \frac{CH}{CO}[/latex] или [latex]CH>AH.[/latex] Но поскольку [latex]CD>AD[/latex], то [latex]CH>AH[/latex]. Отсюда и следует утверждение задачи.

Замечания:

  • Нетрудно показать, что прямая [latex]OH[/latex] пересекает большую и меньшую стороны треугольника [latex]ABC[/latex]. Значит, выпуклыми являются четырехугольники, соответствующие большему и меньшему его углам.
  • Задача допускает также и алгебраическое решение.

В.Сендеров

M1656. Оценка числа доминирующих вершин в вершинно-взвешенном графе

Условие

В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше.)

Ответ: 25.

Решение

Учеников, которые учатся лучше большинства своих друзей, назовем хорошими. Пусть [latex]x[/latex] — число хороших учеников, [latex]k[/latex] — число друзей у каждого ученика. Лучший ученик класса является лучшим в [latex]k[/latex] парах друзей, а любой другой хороший ученик — не менее, чем в [latex][k/2]+1 \geqslant (k+1)/2[/latex] парах (здесь квадратные скобки обозначают целую часть числа). Поэтому хорошие ученики являются лучшими не менее чем в [latex]k+(x-1)(k+1)/2[/latex] парах.
Это число не может превышать числа всех друзей в классе, равного [latex]30k/2=15k[/latex]. Отсюда [latex]k+(x-1)(k+1)/2 \leqslant 15k[/latex] или

[latex]x\leq28\frac{k}{k+1}+1[/latex] [latex](1)[/latex]

Заметим далее, что

[latex]\frac{k+1}{2}\leq30-x[/latex] [latex](2)[/latex]

поскольку число учеников, лучше которых учится наихудший из хороших, не превышает 30.

Правая часть неравенства [latex](1)[/latex] возрастает с ростом [latex]k[/latex], а неравенство [latex](2)[/latex] равносильно условию

[latex]k\leq59-2x[/latex] [latex](3)[/latex]

Из [latex](1)[/latex] и [latex](3)[/latex] следует, что [latex]x\leq28*\frac{59-2x}{60-2x}+1[/latex], или

[latex]x^{2}-59x+856\geq0[/latex] [latex](4)[/latex]

К задаче M1656

Наибольшим целым [latex]x[/latex], удовлетворяющим [latex](4)[/latex] и условию [latex]x \leq 30[/latex], является [latex]x=25[/latex]. Итак, число хороших учеников не превышает 25, что можно проиллюстрировать на графике.

Покажем, что оно может равняться 25. Занумеруем учеников числами от 1 до 30 в порядке ухудшения успеваемости и расположим номера в таблице [latex]6\times 5[/latex] так, как показано на рисунке.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

Пусть пара учеников является парой друзей, если их номера расположены одним из трех способов:

  1. в соседних строках и в разных столбцах;
  2. в одном столбце и один из номеров при этом находится в нижней строке;
  3. в верхней строке.

При этом, как нетрудно проверить все требуемые условия выполнены.

С.Токарев