Определение непрерывности по Коши и по Гейне

 Определение: 

Функция \(f(x)\), называется непрерывной в точке \(x_{0}\), если  \(\lim\limits_{x\rightarrow x_{0}} f(x)=f(x_{0})\)

Определение(по Коши):

Функция \(f(x)\), называется непрерывной в точке \(x_{0}\), если: \(\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0, \forall x\in X,| x-x_{0}|<\delta :|f(x)-f(x_{0})|< \varepsilon\)

Определение (по Гейне):

Функция \(f(x)\), называется непрерывной в точке \(x_{0}\), если для любой последовательности \(\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }\), \(x_{n}\in X, n\in N\), такого что, \(\lim\limits_{n\rightarrow {\infty}}x_{n}=x_{0}\):

\(\lim\limits_{n\rightarrow {\infty}}f(x_{n})=f(x_{0})\)

Определение:

Функция \(f(x)\) называется непрерывной в точке \(x_{0}\), если \(\lim\limits_{\Delta x\rightarrow 0}\Delta f=0\)  , то есть бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Определение:

Функция \(f(x)\) — непрерывна справа, если \(\lim\limits_{x\rightarrow x_{0}+0}f(x)=f(x_{0})\) Функция \(f(x)\) — непрерывна слева, если \(\lim\limits_{x\rightarrow x_{0}-0}f(x)=f(x_{0})\) Функция \(f(x)\) называется непрерывной в точке \(x_{0}\), если \(\lim\limits_{x\rightarrow x_{0}+0}f(x)=\lim\limits_{x\rightarrow x_{0}-0}f(x)=f(x_{0})\)

Замечание:

Все эти определения непрерывности функции в точке эквивалентны. Кроме того, основные элементарные функции непрерывны во всех точках своей области определения.

Пример:

1) \(x_{0}\geq 0\) \(\lim\limits_{x\rightarrow x_{0}}\sqrt{x}=\sqrt{x_{0}}\)        (\(\sqrt{x}\)- непрерывна на всей области определения)

Докажем:

\(\forall \varepsilon > 0, \exists \delta _{\varepsilon }> 0, \forall x:|x-x_{0}|< \delta \Rightarrow |\sqrt{x}-\sqrt{x_{0}}|< \varepsilon\) \(|\sqrt{x}-\sqrt{x_{0}}|= \) \(|\frac{(\sqrt{x}-\sqrt{x_{0}})(\sqrt{x}+\sqrt{x_{0}})}{\sqrt{x}+\sqrt{x_{0}}}| = \) \(|\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}}|=\) \(\frac{|x-x_{0}|}{\sqrt{x}+\sqrt{x_{0}}}\leq \frac{|x-x_{0}|}{\sqrt{x_{0}}}<\) \(\frac{\delta }{\sqrt{x_{0}}}<\) \( \varepsilon\) \(0< \delta < \varepsilon \sqrt{x_{0}}\) (\(\delta =\frac{\varepsilon \sqrt{x_{0}}}{2})\)

Рекомендации:

  Учебники :

 Сборники задач:

  • Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание, исправленное, Отдел 1, § 7 «Непрерывность функции» стр.77-87;
  • Дороговцев А.Я. «Математический анализ» Глава 3, § 2 «Непрерывные функции» стр.50-58.

Непрерывные функции

Тест проверяет знания по тексту «Непрерывные функции»

 

Таблица лучших: Непрерывные функции

максимум из 24 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Критерий Коши существование предела

7983_201

Огюстен Луи Коши(1789-1857)

Прежде чем  ознакомиться с критерием, вспомним, что значит выражение: «Функция удовлетворяет в точке условию Коши».

Определение:

Будем говорить, что функция $latex=f$ удовлетворяет в точке $latex=a$, условию Коши, если она определена в некоторой проколотой окрестности  этой точки и $latex=\forall \varepsilon > 0,\exists \delta =\delta _{\varepsilon }> 0:\forall {x}’,{x}»\in U_{\delta }^{\circ}(a)\Rightarrow |f({x}’)-f({x}»)|< \varepsilon$ (где $latex=U^{\circ}_{\delta }(a)$ -проколотая    $latex=\delta$-окрестсность точки $latex=a$). $latex=0< |x’-a|< \delta$ $latex=0< |x»-a|< \delta$

Теорема(Критерий Коши):

  Для того чтобы функция $latex=f(x)$ имела конечное передельное значение в точке $latex=x=a$, необходимо и достаточно, чтобы функция удовлетворяла условию Коши в точке $latex=a$.

Доказательство

Необходимость

Докажем, что $latex=f(x)$ удовлетворяет в точке $latex=x=a$ условию Коши. Пусть $latex=\exists \lim_{x\rightarrow a}f(x)=A:\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0:\forall x:0< |x-a|< \delta \Rightarrow |f(x)-A|< \frac{\varepsilon }{2}$ $latex=\forall {x}’,{x}»\in U_{\delta }^{\circ}(a):$ $latex=|f({x}’)-f({x}»)|=|(f({x}’)-A)+(A-f({x}»))|\leq |f({x}’)-A|+|f({x}»)-A|< \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon$

Достаточность:

Предположим, что выполняется условие Коши в точке $latex=a$ . Воспользуемся определением предела функции по Гейне: $latex=\lim_{n\rightarrow a}x_{n}=a\Rightarrow \lim_{n\rightarrow \infty } f(x_{n})=A$. Пусть $latex=\left \{ x_{n}\right \}^{\infty }$ -произведение последовательности $latex=\in U_{\delta }^{\circ}(a)$ и $latex=\lim_{n\rightarrow \infty } x_{n}=a$ . Докажем, чтo $latex=\left \{ f(x_{n}) \right \}_{n=1}^{\infty }$ не зависит от выбранного $latex=\left \{ x_{n} \right \}$. Согласно условию Коши мы имеем следующее: $latex=\forall \varepsilon > 0,\exists \delta _{\varepsilon }> 0:{x}’,{x}»\in U_{\delta }^{\circ}(a)\Rightarrow |f({x}’)-f({x}»)|< \varepsilon$ т.к. $latex=\lim_{n\rightarrow \infty }x_{n}=a( \forall \varepsilon > 0,\exists N _{\varepsilon }:\forall n\geq N _{\varepsilon } :|x_{n}-a|< \varepsilon )$ для $latex=\delta _{\varepsilon }:\exists N_{\varepsilon }:\forall n\geq N_{\varepsilon }:0< |x_{n}-a|< \delta _{\varepsilon }$ $latex=\forall m\geq N_{\varepsilon }\Rightarrow 0< |x_{m}-a|< \delta _{\varepsilon }$ $latex=x_{n},x_{m}\in U_{\delta }^{\circ}(a)\Rightarrow |f(x_{n})-f(x_{m})|< \varepsilon$ -следует из условия Коши. $latex=\forall \varepsilon > 0,\exists N_{\varepsilon }:\forall n,m\geq N_{\varepsilon }\Rightarrow |f(x_{n})-f(x_{m})|< \varepsilon$ -$latex=\left \{ f(x_{n}) \right \}$ фундаментальная$latex=\Rightarrow$ по Критерию Коши $latex=\left \{ f(x_{n}) \right \}$-сходящаяся. Покажем, что все последующие $latex=\left \{ f(x_{n}) \right \}$ будут сходится к одному и тому же числу А. $latex=\left \{ f(x_{n}) \right \}\rightarrow A$ $latex=x_{n}\rightarrow a\sim f(x_{n})\rightarrow A$ $latex={x}’_{n}\rightarrow {a}’\sim f({x}’_{n})\rightarrow {A}’$ $latex=x_{1},{x}’_{1},x_{2},{x}’_{2},…\rightarrow a\sim f(x_{1}),f({x}’_{1}),f(x_{2}),f({x}’_{2}),…\rightarrow A$ Теорема доказана.

Рекомендации:

Учебники :

  • Кудрявцев Л.Д. «Математический анализ» Том 1,Глава 1,§ 4, Тема 4.9 «Критерий Коши существование предела функций» стр.81-84;
  • Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления»  Том 1, Глава 2, § 2 «Предел функции» стр.115-136;
  • Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть 1,Глава 4, § 2 «Понятие предельного значения функции» стр.103-110.

Сборники задач:

  • Демидович Б.П. «Сборник упражнений по математическому анализу» 13-е издание,исправленное, Отдел 1, § 5 «Предел функции» стр.47-72;
  • Дороговцев А.Я. «Математический анализ» Глава 2, § 3 «Подполедовательности и частичные пределы.Верхний и нижний пределы последовательности.Фундоментальные последовательности и критерий Коши» стр.38-41.

"Критерий Коши существование предела"

В этом тесте предоставлены вопросы по пройденной теме. Если внимательно изучили материал, следовали всем данным ссылкам и рекомендациям,то вам не составит труда выполнить этот тест.

Таблица лучших: "Критерий Коши существование предела"

максимум из 24 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Бесконечно малые функции

Если [latex]\lim_{x\rightarrow a }f(x)=0[/latex], то функция [latex]f(x)[/latex] называется бесконечно малой при [latex]x\rightarrow a[/latex].

Свойства

  1. Сумма (разность) конечного числа бесконечно малых функций при [latex]x\rightarrow a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  2. Доказательство
    Пусть [latex]f_{1}(x),f_{2}(x),..,f_{n}(x)[/latex] бесконечно малые функции при [latex]x\rightarrow a[/latex]. Тогда существуют числа [latex]\delta _{1},\delta _{2},..,\delta _{n}[/latex] и число [latex]\varepsilon >0[/latex] такие что
    [latex]|x-a|<\delta _{1},|x-a|<\delta _{2},..,|x-a|<\delta _{n}[/latex] (1)
    что влечет за собой условия
    [latex]|f_{1}(x)|<\frac{\varepsilon }{n},|f_{2}(x)|<\frac{\varepsilon }{n},..,|f_{n}(x)|<\frac{\varepsilon }{n}[/latex] (2).
    Если [latex]\delta =\min\begin{Bmatrix}\delta _{1};\delta _{2};..;\delta _{n}\end{Bmatrix}[/latex], то условие [latex]|x-a|<\delta [/latex] усиливает группу условий (1) что влечет за собой группу условий (2). Следовательно
    [latex]\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|\leqslant |f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|\\|f_{1}(x)|+|f_{2}(x)|+..+|f_{n}(x)|<\sum_{1}^{n}\frac{\varepsilon }{n}=\varepsilon\\|f_{1}(x)+f_{2}(x)+..+f_{n}(x)|<\varepsilon [/latex]

  3. Произведение бесконечно малой функции [latex]f(x)[/latex] на ограниченную [latex]g(x)[/latex] в некоторой проколотой окрестности точки [latex]a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  4. Доказательство
    Так как функция [latex]g(x)[/latex] ограничена, то для [latex]x[/latex] удовлетворяющих условию
    [latex]|x-a|<\delta _{1}[/latex] (1)
    существует число
    [latex]C:|g(x)|<C[/latex] (2)
    Так как функция [latex]f(x)[/latex] бесконечно малая, то существует некоторая окрестность [latex]\delta _{2}[/latex] и число
    [latex]\varepsilon >0[/latex] для которых выполняются условия
    [latex]|x-a|<\delta _{2}[/latex] (3)
    и
    [latex]|f(x)|<\frac{\varepsilon}{C}[/latex] (4)
    Выберем [latex]\delta=\min\begin{Bmatrix}\delta _{1};\delta _{2}\end{Bmatrix}[/latex]. Тогда условие [latex]|x-a|<\delta [/latex] более сильное чем (1) и (3) и поэтому оно влечет за собой условия (2) и (4).
    Следовательно [latex]|f(x)g(x)|=|f(x)||g(x)|<\frac{\varepsilon }{C}C =\varepsilon [/latex]

  5. Произведение конечного числа бесконечно малых функций при [latex]x\rightarrow a[/latex] есть бесконечно малая функция при [latex]x\rightarrow a[/latex]
  6. Доказательство
    Так как любая бесконечно малая функция [latex]f(x)[/latex] при [latex]x\rightarrow a[/latex] будет ограничена в некоторой [latex]\delta [/latex] окрестности точки [latex]a[/latex], то доказательство сводится к доказательству свойства 2.

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 83

Следующая тема →

Свойства границ, связанные с арифметическими операциями и с неравенствами

Свойства пределов, связанные с алгебраическими операциями

Если функции [latex]f(x)[/latex] и [latex]g(x)[/latex] имеют конечные пределы в точке [latex]a[/latex], причем [latex]\lim_{x\rightarrow a}f(x)=A[/latex] и [latex]\lim_{x\rightarrow a}g(x)=B[/latex] то:

  1. [latex]\lim_{x\rightarrow a}(f(x)+g(x))=A+B[/latex]
  2. Доказательство
    Так как функции [latex]f(x)[/latex] и [latex]g(x)[/latex] имеют предел в точке [latex]a[/latex], то при [latex]x\rightarrow a[/latex] величины [latex]h_{f}(x)=A-f(x)[/latex] и [latex]h_{g}(x)=B-g(x)[/latex] будут бесконечно малыми. Отсюда, согласно свойствам бесконечно малых [latex]h_{f}+h_{g}=(A+B)-(f(x)+g(x))[/latex] также будет бесконечно малой величиной. Что в свою очередь означает, что [latex]\lim_{x\rightarrow a}(f(x)+g(x))=A+B[/latex]

  3. [latex]\lim_{x\rightarrow a}(f(x)g(x))=AB[/latex]
  4. Доказательство
    Так как функции [latex]f(x)[/latex] и [latex]g(x)[/latex] имеют предел в точке [latex]a[/latex], то при [latex]x\rightarrow a[/latex] величины [latex]h_{f}(x)=A-f(x)[/latex] и [latex]h_{g}(x)=B-g(x)[/latex] будут бесконечно малыми. Поэтому [latex]g(x)=A-h_{f}(x)[/latex] и [latex]g(x)=B-h_{g}(x)[/latex]. Отсюда
    [latex]\\f(x)g(x)=(A-h_{f})(B-h_{g})\\f(x)g(x)=AB-Ah_{g}-Bh_{f}+h_{f}h_{g}\\AB-f(x)g(x)=Ah_{g}+Bh_{f}-h_{f}h_{g}[/latex]
    Согласно свойствам бесконечно малых, величина в правой части — бесконечно малая. Что в свою очередь означает, что [latex]\lim_{x\rightarrow a}(f(x)g(x))=AB[/latex]

  5. [latex]\lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}[/latex], причем [latex]B\neq 0[/latex]
  6. Доказательство
    Условие [latex]\lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}[/latex] эквивалентно тому, что разность [latex]\frac{A}{B}-\frac{f(x)}{g(x)}[/latex]
    бесконечно малая величина при [latex]x\rightarrow a[/latex]. Покажем, что это утверждение имеет место. Приведем к общему знаменателю, получим [latex]\frac{Ag(x)-Bf(x)}{Bg(x)}[/latex]. Рассмотрим предел числителя дроби.
    [latex]\\\lim_{x\rightarrow a}(Ag(x)-Bf(x))\\A\lim_{x\rightarrow a}g(x)-B\lim_{x\rightarrow a}f(x)\\AB-BA=0\: \Rightarrow \frac{A}{B}-\frac{f(x)}{g(x)}=0[/latex]
    Что в свою очередь означает, что [latex]\lim_{x\rightarrow a}(\frac{f(x)}{g(x)})=\frac{A}{B}[/latex]

Свойства пределов, связанные с неравенствами

  1. Теорема о двух милиционерах
  2. Если [latex]\exists \delta > 0:\forall x\in \dot{U}_{\delta }(a)[/latex] выполняются неравенства [latex]g(x)\leqslant f(x)\leqslant h(x)[/latex] и если [latex]\lim_{x\rightarrow a}g(x)= \lim_{x\rightarrow a}h(x)=A[/latex] то [latex]\exists \lim_{x\rightarrow a}f(x)=A[/latex].
    Доказательство
    Воспользуемся определением предела по Гейне. Пусть [latex]\begin{Bmatrix}x_{n}\end{Bmatrix}[/latex] — последовательность из [latex]\dot{U}_{\delta }(a)[/latex], причем [latex]\lim_{x\rightarrow \infty }x_{n}=a[/latex]. Тогда выполняются условия [latex]g(x_{n})\leqslant f(x_{n})\leqslant h(x_{n})[/latex] и [latex]\lim_{n\rightarrow \infty}g(x_{n})= \lim_{n\rightarrow \infty}h(x_{n})=A[/latex]. Тогда в силу свойств пределов последовательностей [latex]\lim _{n\rightarrow \infty }f(x_{n})=A[/latex]. Следовательно [latex]\lim _{x\rightarrow a }f(x)=A[/latex].
    Теорему можно проиллюстрировать следующим графиком:
    t3pol

  3. Если [latex]\exists\delta >0:\forall x\in \dot{U}_{\delta }(a)[/latex] выполняется неравенство [latex]f(x)\leqslant g(x)[/latex] и если[latex]\lim_{x\rightarrow a}f(x)=A[/latex], [latex]\lim_{x\rightarrow a}g(x)=B[/latex], то [latex]A\leqslant B[/latex].
  4. Доказательство
    Воспользуемся определением предела по Гейне. Пусть [latex]\begin{Bmatrix}x_{n}\end{Bmatrix}[/latex] — последовательность из [latex]\dot{U}_{\delta }(a)[/latex], тогда числа [latex]A[/latex] и [latex]B[/latex] будут пределами последовательности [latex]\begin{Bmatrix}x_{n}\end{Bmatrix}_{1}^{\infty }[/latex] т.е. [latex]\lim_{n\rightarrow \infty }f(x_{n})=A[/latex] и [latex]\lim_{n\rightarrow \infty }g(x_{n})=B[/latex] Тогда в силу свойств пределов последовательностей [latex]A\leqslant B[/latex].

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 81-84

Следующая тема →

Необходимое и достаточное условие точек перегиба.

Теорема (необходимое условие точки перегиба)

Если точка $latex x_{0}$ — точка перегиба функции $latex f(x)$ и если $latex \exists {f}»(x)$ в некоторой окрестности точки $latex x_{0}$ (непрерывная в точке $latex x_{0}$), то $latex {f}»(x_{0})=0$.

 

Доказательство

Докажем методом от противного, т.е предположим, что $latex {f}»(x_{0})\neq 0$. Тогда $latex {f}»(x_{0})> 0$ либо $latex {f}»(x_{0})< 0$.
По условию $latex {f}»$ непрерывна в точке $latex x_{0}$ $latex \Rightarrow$ по свойству сохранения знака непрерывной функции получим: $latex \exists \delta$: $latex \forall x\epsilon U_{\delta } (x_{0})$, $latex sign {f}»(x)=sign{f}»(x_{0})$, т.е по достаточному условию строгой выпуклости $latex {f}»(x)> 0$ $latex \forall x\epsilon (a;b)$ (функция выпукла вниз) или $latex {f}»(x)< 0$ $latex \forall x\epsilon (a;b)$ (функция выпукла вверх). Это противоречит определению точки перегиба, которое гласит, что при переходе через точку $latex x_{0}$ направление выпуклости меняется.

Теорема (достаточное условие точки перегиба)

Если функция $latex f(x)$ непрерывна в точке $latex x_{0}$ и имеет в этой точке конечную или бесконечную производную и если $latex {f}»(x_{0})$ меняет знак при переходе через точку $latex x_{0}$, то точка $latex x_{0}$ —  точка перегиба функции $latex f(x)$.

Доказательство

Пусть $latex {f}»$ меняет знак с «-» на «+», тогда по достаточному условию строгой выпуклости функция $latex f(x)$ на интервале $latex (x_{0}-\delta ;x_{0})$ функция будет строго выпукла вверх, на интервале $latex (x_{0};x_{0}+\delta )$ — строго выпукла вниз, т.е при переходе через точку $latex x_{0}$ направление выпуклости изменяется $latex \Rightarrow$ по определению $latex x_{0}$- точка перегиба.

Пример:

Найти точки перегиба функции $latex f(x)=3x^{2}-x^{3}$.

Решение:

Найдем вторую производную функции: $latex {f}’=6x-3x^{2}$ $latex \Rightarrow$ $latex {f}» =6-6x$, значит $latex x=1$. Найдем промежутки знакопостоянства функции:

svg6

При переходе через точку $latex x=1$ функция изменяет направление выпуклости, значит $latex x=1$ — точка перегиба графика функции.

Список литературы

Точки перегиба

Тест на знание темы «Точки перегиба»

Таблица лучших: Точки перегиба

максимум из 6 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных