Достаточные условия экстремума функции двух переменных

Дифференциальное исчисление функций многих переменных — важный раздел анализа, имеющий немало приложений в физике, инженерии и прикладной математике. Существенное количество практических задач формулируется в терминах функций от двух переменных — явном выражении поверхностей в пространстве [latex]\mathbb{R}^{3}[/latex]. В классических курсах анализа их изучают с более общих позиций, рассматривая достаточные критерии экстремума функций вида [latex]f: \mathbb{R}^{n} \rightarrow \mathbb{R}[/latex] (также называемых скалярными полями), в терминах которых ведётся дальнейшее изложение.


Определение

Говорят, что функция [latex]f: \mathbb{E} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}[/latex] имеет во внутренней точке [latex]x_{0}[/latex]

  • локальный минимум, если [latex]\exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \le f(x_{0})[/latex].
  • локальный максимум, если [latex]\exists U(x_{0}) \subset \mathbb{E}: \forall f(x) \ge f(x_{0})[/latex].

Заменой неравенств на строгие получаем условия соответственно строгого локального минимума и максимума.


Определение

Якобианом векторного поля [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \forall x \in \mathbb{R}^{m} f(x) = (f_{1}(x),…,f_{m}(x))[/latex], дифференцируемого в точке [latex]x[/latex] и непрерывного в некоторой её окрестности [latex]U(x) \in \mathbb{R}^{m}[/latex]называют линейный оператор [latex]\mathbf{J}[/latex], описывающий наилучшее линейное приближение функции в некоторой окрестности точки [latex]x[/latex] и имеющий матрицу вида:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f_{ 1 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 1 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{ 1 } }{ \partial x_{ m } } (x) \\ \frac { \partial f_{ 2 } }{ \partial x_{ 1 } } (x) & \frac { \partial f_{ 2 } }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{2} }{ \partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial f_{m} }{ \partial x_{ 1 } } (x) & \frac { \partial f_{m} }{ \partial x_{ 2 } } (x) & … & \frac { \partial f_{m} }{ \partial x_{ m }} (x) \end{Vmatrix} $$

— так называемую матрицу Якоби (матрица касательного отображения). Для скалярного поля матрица Якоби имеет вид:

$$ { J }_{ f }(x)=\begin{Vmatrix} \frac { \partial f }{ \partial x_{ 1 } } (x) & \frac { \partial f }{ \partial x_{ 2 } } (x) & … & \frac { \partial f }{ \partial x_{ m } } (x) \end{Vmatrix} $$

Определение

Гессианом скалярного поля [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}[/latex], дважды дифференцируемого по всем аргументам в точке [latex]x=(x^{1},…,x^{m}) \in \mathbb{R}^{m}[/latex], называют симметрическую квадратичную форму [latex]H(x)=\sum _{ i=1 }^{ m }{ \sum _{ j=1 }^{ m }{ h_{ij}x_{i}x_{j} } } [/latex], описывающую наилучшее квадратичное приближение функции в некоторой окрестности точки [latex]x[/latex] и имеющую матрицу вида:

$$ \mathbf{H}_{f}(x) = \begin{Vmatrix} \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }^{ 2 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 1 }\partial x_{ m } } (x) \\ \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }^{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ 2 }\partial x_{ m } } (x) \\ … & … & … & … \\ \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 1 } } (x) & \frac { \partial ^{ 2 }f }{ \partial x_{ m }\partial x_{ 2 } } (x) & … & \frac { \partial ^{ 2 }f }{ \partial x_{ m }^{ 2 } } (x) \end{Vmatrix} $$

— так называемую матрицу Гессе, определитель которой обычно подразумевается под Гессианом. Матрица Гессе также описывает локальную кривизну скалярного поля.


Утверждение

Поведение функция [latex]f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}[/latex], дважды дифференцируемой в точке [latex]x=(x^{1},…,x^{m}) \in \mathbb{R}^{m}[/latex] и непрерывной в некоторой окрестности [latex]U(x) \subset \mathbb{R}[/latex] этой точки, характеризуется формулой:

$$ f(\mathbf{x}+\mathbf{\Delta x}) \approx f(x) + \mathbf{J(x)\Delta x} + \frac{1}{2} \mathbf{\Delta x^{T} H(x) \Delta x} $$

Достаточное условие экстремума в терминах частных производных

Для того, чтобы функция [latex]f: U(x_{0}) \rightarrow \mathbb{R}[/latex], дважды дифференцируемая по всем аргументам в точке [latex]x_{0}=(x_{0}^{1},…,x_{0}^{m}) \in \mathbb{R}^{m}[/latex], в ней имела экстремум достаточно, чтобы её Гессиан был знакоопределён, причем, положительная определённость влечёт наличие в точке строгого локального минимума, отрицательная определённость — строгого локального максимума.

Спойлер

Воспользуемся разложением в ряд Тейлора, обозначив вектор сдвига как [latex]\mathbf{h}=(h_{1},…,h_{m})[/latex]. Тогда

$$ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \frac{1}{2!} \mathbf{h^{T} H(x) h} + \underline{o}((\left\| \mathbf{h} \right\|)^{2}),\left\| h \right\| =\sqrt { \sum _{ i=1 }^{ n }{ h_{ i }^{ 2 } } } \\ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}}h_{i}h_{j}}} + \underline{o}((\left\| \mathbf{h} \right\|)^{2}) \\ f(\mathbf{x}+\mathbf{h}) — f(\mathbf{x}) = \frac {1}{2!} \left\| \mathbf{h} \right\|^{2}\left[\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}} + \underline{o}(1) \right] $$

Отсюда следует, что знак выражения в левой части, позволяющий судить о наличии или отсутствии экстремума в точке [latex]\mathbf{x}[/latex], определяется знаком выражения в квадратных скобках. Посмотрим на неё внимательнее: пусть [latex]\mathbf{h} != 0[/latex], тогда вектор [latex]{ e }=\left( \frac { h_{ 1 } }{ \left\| { h } \right\| } ,\frac { h_{ 2 } }{ \left\| { h } \right\| } ,…,\frac { h_{ m } }{ \left\| { h } \right\|} \right) [/latex] имеет единичную норму [latex]\left\| { e } \right\| = 1[/latex], каким бы он ни был. Форма [latex]\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}}[/latex] непрерывна на [latex]\mathbb{R}^{m}[/latex] как однородный многочлен второй степени от координат [latex]\mathbf{h}[/latex] в силу непрерывности вторых производных [latex]f[/latex] в окрестности [latex]\mathbf{x}[/latex]. Квадратичная форма непрерывна и на единичной сфере [latex]S(0;1)=\left\{ x \in \mathbb{R}^{m}| \left\| { x } \right\| \le 1 \right\} [/latex]. Приниципиальный интерес этот факт представляет по той причине, что единичная сфера — компакт, а свойства скалярных функций, непрерывных на компакте, хорошо известны и сыграют важную роль. В частности, непрерывная на компакте функция достигает на нём своих точных верхней и нижней граней [latex]m[/latex] и [latex]M[/latex].
Если форма положительно определена, то [latex]0 0[/latex], что [latex]\forall y: \left\| y \right\| < \delta \quad \underline { o } (1)=\alpha (y) < m \Rightarrow \underline { o } (1) < m 0[/latex].
Доказательство для случая отрицательно определённой квадратичной формы симметрично приведенному.
Докажем далее, что значения разных знаков, принимаемые формой в окрестности данной точки, являются достаточным условием отсутствия в ней экстремума функции. Сохраняя обозначения предыдущего пункта, назовём [latex]\mathbf{e_{m}}[/latex] и [latex]\mathbf{e_{M}}[/latex] точки единичной сфера, в которых форма достигает значений [latex]m[/latex] и [latex]M[/latex] соответственно, причем пусть [latex]m < 0 < M[/latex].
Вновь выпишем разложение в ряд Тейлора функции [latex]f[/latex], взяв за вектор сдвига вектор [latex]t\mathbf{e_{m}}[/latex], где число [latex]t[/latex] подобрано таким образом, чтобы [latex]\mathbf{x}+t\mathbf{e_{m}} \in U(x)[/latex]:

$$ f({ x }+{ h })-f({ x })=\frac { 1 }{ 2! } \left\| { te_{ m } } \right\| ^{ 2 }\left[ m+\underline { o } (1) \right] =\frac { 1 }{ 2! } (\left| t \right| \left\| { e_{ m } } \right\| )^{ 2 }\left[ m+\underline { o } (1) \right] =\frac { 1 }{ 2! } t^{ 2 }\left[ m+\underline { o } (1) \right] $$

Аналогично рассуждениям предыдущего пункта, рассмотрим случай [latex]\text{sign}(\underline {o}(1))=1[/latex]: [latex]\lim _{ \left\| t \right\| \rightarrow 0}{ \alpha (t\mathbf{e_{m}}) } = 0 \Rightarrow \exists \delta > 0: \forall t m[/latex]. Тогда значение в квадратных скобках, как и выражение в левой части, неположительно. В ходе аналогичных рассуждений получим двойственную ситуацию для [latex]\mathbf{e_{M}}[/latex]. Следовательно, в любой окрестности [latex]U(\mathbf{x})[/latex] точки [latex]\mathbf{x}[/latex] функция [latex]f[/latex] принимает значения, как большие, так и меньше [latex]f(\mathbf{x})[/latex], следовательно, в точке [latex]\mathbf{x}[/latex] экстремума быть не может по определению.

[свернуть]

Замечание 1

Условие не является необходимым, так как ничего не говорит о случае, когда квадратичная форма полуопределена, т.е. является и неположительна или неотрицательна, т.е. содержит критические точки, не являющиеся экстремальными, строго больше или меньше нуля на всех векторах окрестности.

Спойлер

Исследуем на экстремум функцию [latex]f(x,y)=x^{4}+y^{4}-2x^{2}[/latex]. Отыщем критические точки согласно необходимому условию:

$$ \begin{cases} \frac { \partial f }{ \partial x } (x,y)=4x^{ 3 }-4x=0, \\ \frac { \partial f }{ \partial x } (x,y)=4y^{ 3 }=0; \end{cases} $$

Решаяя систему, получаем точки: [latex](-1,0),(0,0),(1,0)[/latex]. Поскольку смешанные производные существуют и непрерывны и

$$ \frac { \partial f^{ 2 } }{ \partial x^{ 2 } } (x,y)=12x^{ 2 }-4, \frac { \partial f^{ 2 } }{ \partial y\partial x } (x,y)=0, \frac { \partial f^{ 2 } }{ \partial y^{ 2 } } (x,y)=12y^{ 2 } $$

матрица Гессе имеет вид

$$ { H }_{ f }(x,y)=\begin{Vmatrix} 12x^{ 2 }-4 & 0 \\ 0 & 12y^{ 2 } \end{Vmatrix} $$

Используя критерий Сильвестра, убедитесь, что в указанных трёх точках квадратичная форма полуопределена. Несмотря на то, что достаточный критерий экстремума в терминах квадратичного приближения неприменим, из записи функции в виде [latex]f(x,y)=(x^{2}-1)^{2}+y^{4}-1[/latex] очевидно, что в точках [latex](\pm 1, 0)[/latex] функция (симметричная и монотонно возрастающая по обеим переменным) имеет строгий локальный минимум, а в точке [latex](0, 0)[/latex] не имеет экстремума вовсе.
Нижеприведенное изображение наглядно демонстрирует правильность выводов. Нормалями к поверхности обозначены стационарные точки.
Example_Top_View

[свернуть]

Замечание 2

Функция может принимать экстремальные значения в граничных точках области определения. Вышеприведенное достаточное условие для их выявления использовать не рекомендуется, следует обратиться к аппарату теории условного экстремума.


Пример (Демидович, №3629)

Исследовать на локальный экстремум функцию

$$ z = x y \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} \quad (a > 0, \quad b > 0) $$

Спойлер

Вычислим первые частные производные. Решением нижеприведенной системы

$$ z^{ ‘ }_{ x }=\frac { y\left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } \right) }{ \sqrt { 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } } }, \quad z^{ ‘ }_{ y }=\frac { y\left( 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { 2y^{ 2 } }{ b^{ 2 } } \right) }{ \sqrt { 1-\frac { x^{ 2 } }{ a^{ 2 } } -\frac { y^{ 2 } }{ b^{ 2 } } } } $$

находим стационарные точки

$$(0,0),\quad \left( \frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( -\frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( \frac { a }{ \sqrt { 3 } } ,-\frac { b }{ \sqrt { 3 } } \right) ,\quad \left( -\frac { a }{ \sqrt { 3 } } ,-\frac { b }{ \sqrt { 3 } } \right) $$

Отметим, что в точках, лежащих на границе эллипса [latex]1=\frac{x^2}{a^2}+\frac{y^2}{b^2}[/latex] частные производные не существуют, следовательно, их следует отдельно проверить на экстремум, что выходит за рамки аппарата данной статьи.

Для проверки достаточных условий выпишем вторые производные

$$ z^{ » }_{ x^{ 2 } }=\frac { -\frac { xy }{ a^{ 2 } } \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right)}{ \left(1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right)^{\frac{3}{2}} }, \quad z^{ » }_{ y^{ 2 } }=\frac { -\frac { xy }{ b^{ 2 } } \left( 1-\frac { 3x^{ 2 } }{ a^{ 2 } } -\frac { 2y^{ 2 } }{ b^{ 2 } } \right) }{ \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right) ^{ \frac { 3 }{ 2 } } }, \\ z^{ » }_{ xy }=\frac { 1+\frac { 2x^{ 4 } }{ a^{ 4 } } +\frac { 3x^{ 2 }y^{ 2 } }{ a^{ 2 }b^{ 2 } } +\frac { 2y^{ 4 } }{ b^{ 4 } } -\frac { 3x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } }{ \left( 1-\frac { 2x^{ 2 } }{ a^{ 2 } } -\frac { 3y^{ 2 } }{ b^{ 2 } } \right) ^{ \frac { 3 }{ 2 } } } $$
  1. Точка [latex] (0,0) [/latex] не является точкой условного экстремума
    $$ \mathbf{ H }_{ z }(0,0)=\begin{Vmatrix} 0 & 1 \\ 1 & 0 \end{Vmatrix},\quad \Delta_{1}=0,\quad \Delta_{2}=-1 $$
  2. Заметим, что функция [latex]z(x,y)[/latex] чётна, а также [latex]z \left( \frac { -a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } \right) = z \left( \frac { a }{ \sqrt { 3 } } ,\frac { -b }{ \sqrt { 3 } } \right)[/latex].

    Точки [latex] (\pm \frac { a }{ \sqrt { 3 } }, \pm \frac { b }{ \sqrt { 3 } }) [/latex] являются точками условного экстремума

    $$ { H }_{ z }(\frac { a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } )=\begin{Vmatrix} -\frac { 4b }{ \sqrt { 3 } a } & -\frac { 2 }{ \sqrt { 3 } } \\ -\frac { 2 }{ \sqrt { 3 } } & -\frac { 4a }{ \sqrt{3}b} \end{Vmatrix},\quad \Delta _{ 1 }=-\frac { 4b }{ \sqrt { 3 } a } 0 $$ $$ { H }_{ z }(\frac { -a }{ \sqrt { 3 } } ,\frac { b }{ \sqrt { 3 } } )=\left( \begin{array}{cc} \frac { 4b }{ \sqrt { 3 } a } & -\frac { 2 }{ \sqrt { 3 } } \\ -\frac { 2 }{ \sqrt { 3 } } & \frac { 4a }{ \sqrt { 3 } b } \end{array} \right) ,\Delta _{ 1 }=\frac { 4b }{ \sqrt { 3 } a } >0, \quad \Delta _{ 1 }=\frac { 16 }{ 3 } — \frac{4}{3} = 4 > 0 $$

    Соответственно, [latex]\left(\pm \frac {a}{ \sqrt { 3 } } , \pm \frac { b }{ \sqrt { 3 } } \right)[/latex] — точки минимума, [latex]\left(\pm \frac {a}{ \sqrt { 3 } } , \mp \frac { b }{ \sqrt { 3 } } \right)[/latex] — точки максимума.

  3. Пример: [latex]a = b = 2[/latex]
    Elliptic_Surface_a_b_2

[свернуть]

Источники:

Закрепление материала.

Таблица лучших: Достаточные условия экстремума функции многих переменных

максимум из 23 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о вычислении спрямляемого пути, следствия

Определения

Путем на плоскости называется отображение [latex]t \mapsto (\varphi (t),\psi (t))[/latex] отрезка [latex]\left [ \alpha,\beta \right ][/latex] в [latex]\mathbb{R}^{2},[/latex] задаваемое парой непрерывных функций [latex]\varphi [/latex] и [latex]\psi.[/latex] Это означает, что каждому значению [latex]t\in \left [ \alpha,\beta \right ][/latex] ставится в соответствие точка плоскости с координатами [latex]\left ( x,y \right )[/latex], где [latex]x=\varphi (t),y=\psi(t).[/latex]
След пути — множество точек [latex]\left \{ \left ( \varphi (t),\psi (t) \right )\in \mathbb{R}^{2}:\, t\in\left [ \alpha ,\beta \right ] \right \}.[/latex]
Длина пути — точная верхняя грань длин ломанных, вписанных в след пути.
Если длина пути конечна, то путь называется спрямляемым.
Если функции [latex]\varphi[/latex] и [latex]\psi[/latex] непрерывно дифференцируемы на отрезке [latex]\left [ \alpha ,\beta \right ][/latex], то путь [latex]\gamma =(\varphi ,\psi )[/latex] называется дифференцируемым.

Теорема

Дан путь [latex]\gamma[/latex] :  [latex]\left\{\begin{matrix} x=\varphi (t)\\y=\psi (t) \end{matrix}\right.[/latex]

Пусть [latex]\gamma = (\varphi ,\psi )[/latex] непрерывно дифференцируемый путь на отрезке [latex]\left [ \alpha ,\beta \right].[/latex]
Тогда [latex]L_{(\gamma )}=\int_{\alpha }^{\beta }\sqrt{\left [ \varphi ^{‘}(t)\right ]^{2}+\left [ \psi ^{‘}(t)\right ]^{2}}dt,[/latex] где [latex]L_{(\gamma )}[/latex] — длина пути.

Доказательство

Часть 1

[latex]\square [/latex] [latex]\Pi :\alpha =x_{0}<x_{1}< … <x_{n}=\beta [/latex] — произвольное разбиение отрезка [latex]\left [ \alpha ,\beta \right].[/latex] Возьмём ломаную, проведённую между точками с соседними номерами. Очевидно, её длина:
[latex]S=\Sigma _{1}^{n-1}\sqrt{(x_{i+1}-x_{i})^{2}+(y_{i+1}-y_{i})^{2}}[/latex] — как сумма расстояний между соседними точками.
По формуле конечных приращений:

  • [latex]x_{i+1}-x_i=\varphi ‘(t_i)(t_{i+1}-t_i);[/latex]
  • [latex]y_{i+1}-y_i=\psi ‘(t_i)(t_{i+1}-t_i);[/latex]

Тогда длина ломаной будет равна: [latex]S=\Sigma _{1}^{n-1}\sqrt{(\varphi ‘(t))^{2}+(\psi ‘(t))^{2})}(t_{i+1}-t_i).[/latex]
Обозначим наибольшие значения производных [latex]\psi ‘(t)[/latex] и [latex]\varphi ‘(t)[/latex] :
[latex]L=sup(|\psi ‘(t)|)[/latex] и [latex]\overline{L}=sup(|\varphi ‘(t)|)[/latex].
Очевидно: [latex]S\leq \sqrt{L^{2}+\overline{L}^2}(T-t_{0}),[/latex] [latex]T[/latex] и [latex]t_0[/latex]  — границы отрезка. Из неравенства делаем вывод, что путь спрямляем, так как длина ломаной ограничена сверху.
Аналогично, можно получить формулу:
[latex]S\geq \sqrt{l^{2}+\overline{l}^2}(T-t_{0})[/latex], где [latex]l=inf(|\psi ‘(t)|), \overline{l}=inf(|\varphi ‘(t)|)[/latex]

Часть 2

У нас имеются выведенные в части 1 неравенства:

  • [latex]S\leq \sqrt{L^{2}+\overline{L}^{2}}(T-t_0);[/latex]
  • [latex]S\geq \sqrt{l^{2}+\overline{l}^{2}}(T-t_0);[/latex]

Получаем: [latex]\sqrt{L^2+\overline L^2}(T-t_0)\geq S\geq \sqrt{l^2+\overline l^2}(T-t_0), p=inf(S)[/latex]
А теперь возьмём точку [latex]a_1[/latex] на нашей дуге с координатами [latex](t_1,y_1)[/latex]. Придадим её абсциссе приращение [latex]\Delta t[/latex] и получим точку [latex]a_2(t_1+\Delta t, y_2)[/latex]. Получили две точки на дуге и часть дуги ограничена этими точками. Применим к этой части наше двойное неравенство.
При [latex]\Delta t \rightarrow 0[/latex] левая часть стремится к [latex]\sqrt{(\varphi ‘(t))^2+(\psi ‘(t))^2}\Delta t.[/latex] Аналогично, для правой.
Получаем [latex]\sqrt{(\varphi ‘(t))^2+(\psi ‘(t))^2}\Delta t\geq S\geq \sqrt{(\varphi ‘(t))^2+(\psi ‘(t))^2}\Delta t[/latex]. Преобразуем это двойное неравенство:
[latex]\sqrt{(\varphi ‘(t))^2+(\psi ‘(t))^2}\geq \frac{S}{\Delta t}\geq \sqrt{(\varphi ‘(t))^2+(\psi ‘(t))^2}.[/latex]
[latex]L^{‘}_{(\gamma )}=\sqrt{(\varphi ‘(t))^2+((\psi ‘(t))^2}.[/latex]
Тогда [latex]L_{(\gamma )}=\int_{\alpha }^{\beta }\sqrt{\left [ \varphi ^{‘}(t)\right ]^{2}+\left [ \psi ^{‘}(t)\right ]^{2}}dt,[/latex] где [latex]L_{(\gamma )}[/latex] — длина пути. [latex]\blacksquare [/latex]

Замечание: В первоисточниках, использованных при написании этого материала, доказательство теоремы не разбивается на 2 части. Тем не менее, для большего удобства здесь оно разбито на 2 основных части.

Следствия из теоремы

Из доказанной выше формулы получаются три формулы, описанные здесь и применяемые на практике.

Литература:

  1. Фихтенгольц, «Курс дифференциального и интегрального исчисления», 2001 г.,  том 2, стр. 192 (следствия). Фихтенгольц, «Курс дифференциального и интегрального исчисления», 2001 г.,  том 1, стр. 192 (определения, теорема).
  2. Фихтенгольц, «Курс дифференциального и интегрального исчисления», 1964 г.,  том 2, стр. 169 (следствия). Фихтенгольц, «Курс дифференциального и интегрального исчисления», 1964 г., том 1, стр. 560,562-563 (определения, теорема).

Тест

Таблица лучших: Теорема о вычислении спрямляемого пути, следствия

максимум из 9 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема Ферма о корне производной

Формулировка

Если функция имеет локальный экстремум в точке [latex]x_{0}[/latex] и дифференцируема в этой точке, то [latex]f'(x_{0})=0[/latex]

Доказательство

Пусть, например, функция имеет локальный минимум в точке [latex]x_{0}.[/latex] Тогда, по определению локального минимума для всех [latex]x\in(x_{0}-\delta , x_{0}+\delta )[/latex] выполняется неравенство [latex]f(x)-f(x_{0})\geq 0.[/latex]
Если [latex]x\in(x_{0}-\delta ,x_{0}) ,[/latex] то [latex]x-x_{0}< 0,[/latex] тогда из условия [latex]f(x)-f(x_{0})\geq 0[/latex] следует, что
[latex]\frac{f(x)-f(x_{0})}{x-x_{0}}\leq 0,[/latex]
а если [latex]x\in (x_{0},x_{0}+\delta ),[/latex] то выполняется неравенство
[latex]\frac{f(x)-f(x_{0})}{x-x_{0}}\geq 0.[/latex]
Так как функция f предел при [latex]x\rightarrow x_{0}[/latex] в левой части неравенства [latex]\frac{f(x)-f(x_{0})}{x-x_{0}}\leq 0[/latex], равный [latex]f_{-}^{‘}(x_{0})=f'(x_{0}).[/latex] По свойствам пределов из [latex]\frac{f(x)-f(x_{0})}{x-x_{0}}\leq 0[/latex] следует, что
[latex]f'(x_{0})\leq 0.[/latex]
Аналогично, переходя к пределу в неравенстве [latex]\frac{f(x)-f(x_{0})}{x-x_{0}}\geq 0[/latex] получаем
[latex]f'(x_{0})\geq 0.[/latex]
Из неравенств [latex]f'(x_{0})\leq 0[/latex] и [latex]f'(x_{0})\geq 0[/latex] следует, что [latex]f'(x_{0})=0.[/latex]

Пример

Функция [latex]f(x)=x^{2}[/latex] имеет на отрезке [-1,1] точку минимума [latex]x_{0}=0.[/latex] Производная функция существует при всех x: [latex]f'(x)=2x.[/latex] В точке минимума производная действительно оказывается равной 0. [latex]f'(x_{0})=f'(0)=0,[/latex] так что утверждение теоремы Ферма выполнено.

ferma

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 1988. стр.164-165
  • Демидович Б.П., Сборник задач и упражнений по математическому анализу, М., Наука, 1981. стр.134-140
  • www.pm298.ru
  • www.bymath.net

Формула конечных приращений Лагранжа

Формулировка

Если функция [latex]\in C[a,b][/latex] и дифференцируема на [latex](a,b),[/latex] то [latex]\exists \xi \in (a,b):f(b)-f(a)=f'(\xi)(b-a).[/latex]

Доказательство

Рассмотрим функцию [latex]\exists \xi \in (a,b):f(b)-f(a)=f'(\xi)(b-a),[/latex] где число [latex]\lambda [/latex] выберем таким, чтобы выполнялось условие [latex]\varphi (a)=\varphi (b),[/latex] т.е. [latex]f(a)+\lambda a=f(b)+\lambda b.[/latex] Отсюда находим
[latex]\lambda =-\frac{f(b)-f(a)}{b-a}.[/latex]
Так как функция [latex]\varphi (x)[/latex]непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и принимает равные значения в концах этого интервала, то по теореме Ролля о корне производной существует точка [latex]\xi \in (a,b)[/latex] такая, что [latex]\varphi ‘(\xi )=f'(\xi )+\lambda =0.[/latex] Отсюда в силу условия [latex]\lambda =-\frac{f(b)-f(a)}{b-a}[/latex] получаем равенство
[latex]f'(\xi )=\frac{f(b)-f(a)}{b-a}[/latex]
равносильное равенству [latex]f(b)-f(a)=f'(\xi)(b-a).[/latex]

Пример

Доказать что [latex]ln(1+x)<x[/latex] при [latex]0<x[/latex]

Спойлер

Применяя теорему Лагранжа к функции на отрезке [latex][0,x],[/latex] где [latex]x>0,[/latex] получим [latex]ln(1+x)=\frac{1}{1+\xi}x,[/latex] откуда следует [latex]ln(1+x)>x,[/latex] так как [latex]0<\xi<x.[/latex]

[свернуть]

Формула конечных приращений Лагранжа

Этот тест был разработан для проверки усвоенных знаний по данному разделу

Литература

  • Конспект лекций Лысенко З.М.
  • Тер-Крикоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 1988. стр.166-168
  • Демидович Б.П., Сборник задач и упражнений по математическому анализу, М., Наука, 1981. стр.134-140

Геометрический смысл производной

Геометрический смысл производной

Если функция [latex]y=f\left(x\right)[/latex] имеет производную в точке [latex]x_{0}[/latex], значит [latex]\exists \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = {f}’\left(x\right)[/latex], тогда существует предельное положение секущей к графику функции в точке [latex]M_{0}\left(x_{0},f\left(x_{0}\right)\right):[/latex] [latex]y-y_{0}=\frac{\Delta y}{\Delta x}\left(x-x_{0}\right) \left(x \to x_{0}\right)[/latex] это означает, что в точке [latex]M_{0} \exists l_{0}=k_{0}x + b_{0}[/latex] — касательная к графику функции, причём [latex]k_{0}={f}’\left(x_{0}\right)[/latex].

Иллюстративный материал.

Таким образом геометрический смысл производной — угловой коэффициент касательной к графику функции [latex]y = f\left(x\right)[/latex] в точке [latex]M_{0}\left(x_{0},{f}\left(x_{0}\right)\right)[/latex], а уравнение касательной [latex]l_{0} ={f}\left(x_{0}\right)+ {f}’\left(x_{0}\right)\left(x — x_{0}\right)[/latex].

 

Пример:

Найдите уравнение касательной к графику функции [latex]y=e^{2x-3}[/latex] в точке [latex]x_{0} = 5[/latex], а также угол наклона касательной в этой точке.
Решение:
Известно, что уравнение касательной в точке имеет вид [latex]l={f}\left(x_{0}\right)+{f}’\left(x_{0}\right)\left(x-x_{0}\right)[/latex], причём [latex]{f}’\left(x_{0}\right)=\mathrm{tg}\alpha[/latex], где [latex]\alpha[/latex] — угол наклона касательной.
Находим значение касательной в точке 5, получаем [latex]{f}’\left(x\right)=2e^{2x-3}[/latex], а в точке [latex]x_{0}=5: \, {f}’\left(5\right)=2e^{7} \Rightarrow[/latex][latex] l = e^{7}+2e^{7}\left(x-5\right) =[/latex][latex] -9e^{7}+2e^{7}x[/latex], [latex]\alpha = \mathrm{arctg}\left(2e^{7}\right).[/latex]

Список литературы:

  • Курс лекций по математическому анализу в двух частях Часть 1. В.И.Коляда, А.А.Кореновский стр. 109.
  • Лекции Зои Михайловны Лысенко.

 

Тест:

Тест на знание геометрического смысла производной.

Таблица лучших: Тест на знание геометрического смысла производной.

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных