Loading [MathJax]/jax/output/SVG/jax.js

16.1 Равномерная сходимость

Определение. Пусть на множестве E задана последовательность функций fn(n=1,2), сходящаяся на E поточечно к функции f. Говорят, что последовательность {fn} сходится равномерно к функции f на множестве E, если для любого ε>0 найдется такой номер N, зависящий только от ε (и не зависящий от x), что для каждого nN справедливо неравенство fn(x)f(x)∣<ε.

Определение поточечной сходимости на множестве E в кванторах можно записать следующим образом:
xEε>0N=N(ε,x):nNfn(x)f(x)∣<ε, а равномерной сходимости — так: ε>0N=N(ε):nNxEfn(x)f(x)∣<ε. В определении поточечной сходимости номер N зависит, вообще говоря, от ε и от x, а в определении равномерной сходимости N зависит только от ε и не зависит от x. Иначе говоря, поточечная сходимость будет равномерной, если для заданного ε>0 номер N можно подобрать так, чтобы он был пригоден сразу для всех xE.

Теперь видно, что свойство равномерной сходимости не слабее, чем свойство поточечной сходимости, т. е. из равномерной сходимости следует поточечная сходимость. Обратное неверно. Может оказаться, что для каждого ε>0 и для xE найдется номер N=N(ε,x), но для всех сразу xE номер N, не зависящий от x, может и не существовать. Приведем

Пример 1. Пусть fn(x)=xn(xE[0,1]). Мы уже видели, что f(x)=limnfn(x)={0,0x<1,1,x=1. Если бы последовательность {xn} сходилась к функции f равномерно, то неравенство xnf(x)∣<ε при достаточно больших n(nN(ε)) должно было быть выполненным сразу для всех xE. Но это не так, поскольку при фиксированном n имеем limx10xn=1, так что в любой левой полуокрестности точки x0=1 найдется такая точка x112. Поэтому если мы возьмем ε0>12, то получим неравенство xn10∣≥ε0. Окончательно имеем ε0(ε0=12):NnN(n=N)x1= =x1(ε,n)E:∣fn(x1)f(x1)∣≥ε0 Это означает, что данная последовательность не является равномерно сходящейся на множестве E.

В этом примере «плохие» точки x1, т.е. такие, в которых выполнено неравенство fn(x1)f(x1)∣≥ε0, находится вблизи точки x0=1. Если же мы отделимся от x0, т.е. рассмотрим последовательность xn на множестве Eδ=[0,1δ], где δ>0 — произвольное число, то сходимость данной последовательности к функции f(x)0 на множестве Eδ уже будет равномерной. Действительно, в этом случае fn(x)f(x)∣=xn(1δ)n<ε(0x1δ), если только nN(ε), где N(ε)=[lnεln(1δ)]+1 не зависит от xEδ.

Пример 2. Для последовательности функций fn(x)=nx1+n2x2(xER) ранее мы показали, что f(x)=limxnx1+n2x2=0(xR). Поэтому fn(x)f(x)∣→0(n) при каждом фиксированном xR. Однако при фиксированном n наибольшее значение функция fn(x)=nx1+n2x2 достигает в точке xn=1n и это значение равно fn(1n)=12. Таким образом, для ε0=12 неравенство fn(x)f(x)∣<ε0 не может быть выполненным сразу для всех xR. Значит, последовательность {fn} сходится к функции f0 на R, но неравномерно, т.е. ε0(ε0=12):NnN(n=N)x1(x1=1n):∣fn(x1)f(x1)∣≥ε0.

Если же зафиксировать число δ>0, то нетрудно показать, что на множестве Eδ=[δ,+) последовательность функций fn(x)=nx1+n2x2 сходится равномерно. Действительно, неравенство fn(x)f(x)∣=nx1+n2x21nx1nδ<ε(xEδ) выполнено, если только nN(ε), где N(ε)=[1εδ]+1 не зависит от xEδ

Геометрический смысл равномерной сходимости состоит в том, что начиная с номера N графики функций fn(x) расположены в ε-полосе графика функции f.

Равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Определение. Пусть на множестве E задана последовательность функций {un}. Ряд (n=1)un называется равномерно сходящимся на множестве E, если он сходится поточечно на E и последовательность его частичных сумм равномерно сходится к сумме ряда на множестве E.

Другими словами, определение равномерной сходимости ряда (n=1)un, сходящегося к функции f на множестве E, можно сформулировать следующим образом. Обозначим через Sn(x)=n(k=1)uk(x) частичные суммы ряда (n=1)un(x),rn(x)=(k=n+1)uk(x) — остаток после n-го слагаемого. Тогда Sn(x)+rn(x)=f(x), а равномерная сходимость ряда означает, что для любого ε>0 найдется такой номер N (зависящий только от ε), что для всех nN и для всех xE справедливо неравенство Sn(x)f(x)∣<ε. Но так как Sn(x)f(x)∣=∣rn(x), то получаем ε>0N:nNxErn(x)∣<ε. Это в свою очередь означает, что остаток ряда равномерно стремится к нулю. Таким образом, получили следующее эквивалентное определение равномерной сходимости ряда.

Ряд (n=1)un(x) называется равномерно сходящимся на множестве E, если последовательность его остатков после n-го слагаемого {rn} равномерно сходится к нулю на множестве E.

Это определение более выгодно по сравнению с предыдущим тем, что оно использует лишь слагаемые исходного ряда и не использует сумму самого ряда f(x)=(n=1)un(x).

Пример 1. Ряд (n=1)xn сходится на интервале (1,1) т.к. он представляет собой сумму геометрической прогрессии со знаменателем x,x∣<1. Исследуем его на равномерную сходимость. Для этого рассмотрим остаток rn(x)=(k=n+1)xk=xn+11x. При фиксированном x и n имеем rn(x)0. Это означает, что данный ряд сходится при каждом x, т.е. поточечно. Если же зафиксировать n к 10, то получим, что xn+11x+, т.е. если x близок к 1, то rn(x) принимает большие значения. Это означает, что неравенство rn(x)=xn+11x<ε сразу для все x(1,1), но неравномерно.

С другой стороны, на любом отрезке [q,q], где 0<q<1, ряд (n=1)xn сходится равномерно. Действительно, в этом случае rn(x)∣=(k=n+1)xn∣=xn+11xqn+11q,(x[q,q]). Отсюда следует, что последовательность {rn(x)} равномерно сходится к нулю на [q,q], т.е. данный ряд равномерно сходится на [q,q].

Пример 2. Рассмотрим ряд (n=0)x2(1+x2)n. Имеем rn(x)={x2(1+x2)n,x00,x=0. Если x фиксировано, то rn(x)0 при n. Это означает, что ряд является сходящимся при любом xR, т.е. он сходится поточечно. Если зафиксируем n, то при стремлении x к нулю получаем, что rn(x)1, а это означает, что неравенство rn(x)=1(1+x2)n<ε при 0<ε<1 не может выполняться сразу для всех xR, каким бы большим номер n мы ни взяли. Таким образом, rn(x)0(n), но неравномерно. Следовательно, данный ряд сходится на R неравномерно.

Замечание. Пусть задан ряд (n=1)un(x)(xE).(16.2) Рассмотри величины μn=supxE(k=n+1)uk(x)∣=supxErn(x). Тогда определение равномерной сходимости ряда (16.2) на множестве E можно сформулировать следующим образом.

Ряд (16.2) сходится равномерно на множестве E, если limnμn=0.

Действительно, если μn0(n), то для любого ε>0 найдется такой номер N, что для всех nN справедливо неравенство μn<ε, т.е. для всех xE справедливо неравенство rn(x)∣<ε, а значит ряд (16.2) сходится равномерно. Обратно, если rn(x) равномерно сходится к нулю, то для всех xE справедливо неравенство rn(x)∣<ε. Поэтому и μn=supxErn(x)∣≤ε, т.е. μn0 при n.

Пример 3. Исследовать на равномерную сходимость ряд (n=1)(1)nx2+n на множестве R

Данный ряд является рядом лейбницевского типа и поэтому, согласно теореме об оценке остатка ряда лейбницевского типа, rn(x)∣≤1x2+n+11n+1. Таким образом, μn1n+10(n), и, следовательно, данный ряд сходится равномерно на R.

Теорема(критерий Коши равномерной сходимости последовательности). Для того чтобы последовательность функций {fn} равномерно сходилась на множестве E к некоторой функции, необходимо и достаточно, чтобы для любого ε>0 существовал такой номер N, зависящий только от ε, что для любых n,mN и для любого xE было выполнено неравенство fn(x)fm(x)∣<ε.

Необходимость. Пусть последовательность {fn} сходится к f равномерно на E. Зададим ε>0. Тогда найдется такой номер N, что для все nN и для всех xE справедливо неравенство fn(x)f(x)∣<ε2. Если возьмем произвольные, n,mN, то для любого xE получим fn(x)fm(x)∣≤∣fn(x)f(x)+fm(x)f(x)∣<ε2+ε2=ε, т.е. выполнено условие теоремы (условие Коши).
Достаточность. Пусть выполнено условие Коши. Зафиксируем xE и получим числовую последовательность {fn(x)}, которая, согласно условию Коши, является фундаментальной и, следовательно, сходящейся. Обозначим ее предел через f(x). Так как x inE произвольное, то, проделав эту операцию для все xE, получим функцию f(x). Покажем, что последовательность {fn(x)} стремится к f(x) равномерно на E. Зададим ε>0. Тогда найдется такой номер N, что для всех n,mN и для любого xE справедливо неравенство fn(x)fm(x)∣<ε. Зафиксируем nN,xE и устремим m. Тогда получим fn(x)f(x)∣≤ε. Это неравенство выполнено для любого nN и для всех xE, а это и означает, что последовательность {fn} сходится к f равномерно на E.

Доказанную теорему можно переформулировать для рядов следующим образом.

Теорема(критерий Коши равномерной сходимости ряда). Для того чтобы ряд (n=1)un(x) равномерно сходился на множестве E, необходимо и достаточно, чтобы для любого E>0 существовал такой номер N, зависящий только от ε, что для всех nN,pN и для любого xE выполнялось неравенство n+pk=n+1uk(x)∣<ε.

Эта теорема вытекает из предыдущей, если учесть, что равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Теорема (признак Вейерштрасса равномерной сходимости ряда). Пусть дан ряд n+1un(x)(xE).(16.3) Предположим, что существует числовая последовательность {an}, такая, что un(x)∣≤an(n=1,2) для всех xE, и числовой ряд n=1an сходится. Тогда ряд (16.3) сходится равномерно на E.

В силу условия теоремы, имеем n+pk=n+1uk(x)∣≤n+pk=n+1ak(xE). Так как ряд n=1an сходится по условию, то, в силу критерия Коши для числовых рядов, для любого ε>0 найдется такой номер N, что для всех nN и для любого pN справедливо неравенство n+pk=n+1ak<ε. Но тогда и неравенство n+pk=n+1uk(x)∣<ε будет выполненным для всех xE, т.е. выполнено условие критерия Коши равномерной сходимости функционального ряда, в силу которого ряд (16.3) сходится равномерно на E.

Замечание 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда. В самом деле, рассмотренный выше пример 3 ряда n=1(1)nx2+n показывает, что этот ряд хотя и сходится равномерно на R, но оценить сверху его слагаемые можно лишь слагаемыми расходящегося числового ряда n=11n

Замечание 2. Признак Вейерштрасса дает достаточное условие не только равномерной, но и абсолютной сходимости ряда. Это сразу следует из неравенства n+pk=n+1uk(x)∣≤n+pk=n+1ak(xE).

Замечание 3. Признак Вейерштрасса заключается в том, что из сходимости ряда n=1an, где an=supxEun(x), следует равномерная (и абсолютная) сходимость ряда n=1un(x) на множестве E.

Пример 4. Рассмотрим ряд n=1x1+n4x2 на R. Используя очевидное неравенство 2a∣≤1+a2, находим мажорантный числовой ряд x1+n4x2∣≤1n2n2x1+(n2x)2121n2. Поскольку числовой ряд n=1121n2 сходится, то исходный функциональный ряд сходится равномерно на R.

Пример 5. Ряд n=1cosnxn2 сходится равномерно на R, поскольку cosnxn2∣≤1n2 и числовой ряд n=11n2 сходится.

Теорема(признак Абеля равномерной сходимости) Пусть на множестве E заданы две функциональные последовательности {an(x)} и {bn(x)}, такие, что при каждом xE числовая последовательность {an(x)} монотонна, функции an(x) ограничены в совокупности, т.е. существует такое M, что an(x)∣≤M(xE,n=1,2,), а ряд n=1bn(x) сходится равномерно на E. Тогда ряд n=1an(x)bn(x) сходится равномерно на E.

Теорема(признак Дирихле равномерной сходимости). Пусть на множестве E заданы две последовательности функций {an(x)} и {bn(x)}, такие, что при каждом xE числовая последовательность {an(x)} монотонна, функциональная последовательность {an(x)} равномерно сходится к нулю на E, а частичные суммы ряда n=1bn(x) ограничены в совокупности на E, т.е. существует такое число M, что nk=1bk(x)∣≤M(xE,n=1,2,). Тогда ряд n=1an(x)bn(x) сходится равномерно на E.

Доказательства признаков Абеля и Дирихле легко провести, основываясь на критерии Коши и применяя преобразование Абеля(точно так же, как это было сделано при доказательстве признаков Абеля и Дирихле сходимости числовых рядов). Рекомендуется провести эти доказательства самостоятельно.

Пример 6. Рассмотрим ряды вида n=1an(x)cosnx и n=1an(x)sinnx, где последовательность чисел an монотонно стремится к нулю. К ряду n=1an(x)cosnx применим признак Дирихле. Для этого рассмотрим суммы Sn(x)=nk=1coskx. Имеем 2sinx2Sn(x)=nk=12sinx2coskx= =sin3x2sinx2+sin5x2sin3x2++sin(n+12)xsin(n12)x= =sin(n+12)xsinx2. Поэтому Sn(x)=sin(n+12)x2sinx212(0<x<2π),Sn(x)∣≤12+12sinx2. Если x0, то Sn(x)n, так что в окрестности нуля нарушается равномерная ограниченность сумм Sn(x). Если же δx2πδ, где 0<δ<π, то Sn(x)∣≤12+12sinδ2 и поэтому [δ,2πδ] выполнены все условия признака Дирихле, в силу которого ряд n=1ancosnx сходится равномерно на [δ,2πδ]. На всем интервале (0,2π) признак Дирихле неприменим, но это еще не означает, что ряд сходится неравномерно, поскольку признак Дирихле — лишь достаточное условие равномерной сходимости ряда.

Покажите самостоятельно, что ряд n=1ansinnx, где последовательность {an} монотонно убывает к нулю, сходится равномерно на [δ,2πδ], где произвольное 0<δ<π. Для этого полезно использовать равенство nk=1sinkx=12sinx2nk=12sinx2sinkx= =12sinx2nk=1[cos(k12)xcos(k+12)x]= =12sinx2[cosx2cos(n+12)x](0<x<2π) и применить признак Дирихле.

Примеры решений задач

  1. Исследовать на равномерную сходимость на интервале (,+) ряд n=1nx1+n5x2.
Решение

Исследовать на равномерную сходимость на отрезке  [0,2π] ряд +n=1=sinnxn .

Решение

Равномерная сходимость

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список литературы


Тер-Крикоров А.М., Шабунин М.И. Курс Математического Анализа. 1997; с исправлениями 2001. ФИЗМАТЛИТ, 2001, стр.  384 — 407.

В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу Т.2. Одесса, «Астропринт», 2010, стр. 32-41.

Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления» ФИЗМАТЛИТ, 1964 т.2, стр. 376-386.

2.5 Критерий Коши

Если для исследования сходимости последовательности применять определение предела, то мы заранее должны знать, является ли данная последовательность сходящейся и значение ее предела. Используя определение предела, мы можем лишь доказывать выдвинутую гипотезу. Однако в ряде случаев по самому виду последовательности трудно определить, является ли она сходящейся или расходящейся. Например, xn=1+12++1n . В связи с этим возникает необходимость найти внутреннее свойство последовательности, равносильное сходимости и не
зависящее от числа a – предела последовательности. Мы докажем, что таким свойством является фундаментальность.

Определение. Последовательность {xn} называется фундаментальной (сходящейся в себе), если для любого ε>0 найдется такой номер N, зависящий, вообще говоря, от ε, что для всех номеров nN, mN справедливо неравенство |xnxm|<ε.

Существенное отличие определения фундаментальности от определения предела состоит в том, что в определении предела мы должны знать значение предела, а в определении фундаментальности это не требуется. Смысл определения предела состоит в том, что все элементы последовательности с достаточно большими номерами мало отличаются от значения предела, т. е. |xna|<ε при nN=N(ε). В определении фундаментальности требуется чтобы все элементы последовательности с достаточно большими номерами мало отличались друг от друга (|xnxm|<ε, n,mN=N(ε)).

Равносильность сходимости последовательности и ее фундаментальности устанавливает следующая теорема.

Теорема (критерий Коши). Для того чтобы последовательность была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

Необходимость доказывается совсем просто. В самом деле, нужно показать, что из сходимости следует фундаментальность. Пусть последовательность {xn} сходится и limnxn=a. Зададим ε>0 и найдем номер N, такой, что для любого nN справедливо неравенство |xna|<ε2. Если n,mN, то получим |xnxm||xna|+|xma|<ε2+ε2=ε а это и означает, что {xn} – фундаментальна.

Достаточность. Нужно показать, что из фундаментальности последовательности следует ее сходимость. Сначала мы покажем, что из фундаментальности следует ограниченность. Затем, используя лемму Больцано – Вейерштрасса, из ограниченной последовательности выделим сходящуюся подпоследовательность и, наконец, снова используя фундаментальность, покажем, что и вся последовательность сходится к тому же пределу, что и выделенная подпоследовательность.

Итак, пусть {xn} – фундаментальная последовательность. Докажем ее ограниченность. Зададим ε=1 и, пользуясь фундаментальностью, найдем номер N1, такой, что для любых n,mN1 справедливо неравенство |xnxm|<1. Зафиксируем m=N1. Тогда получим, что для всех nN1 имеет место неравенство |xnxm|<1, т. е. xN11<xn<xN1+1. Отсюда следует, что |xn||xN1|+1 для всех nN1. Во множестве E={|xN1|+1,|x1|,,|xN11|}, состоящего из конечного числа элементов, выберем наибольший A=max{|xN1|+1,|x1|,,|xN11|}. Тогда получим, что |xn|A для всех n=1,2,, а это и означает, что {xn} – ограниченная последовательность.

Применяя теперь к ограниченной последовательности {xn} лемму Больцано – Вейерштрасса, выделим из нее сходящуюся подпоследовательность {xnk}k=1 и обозначим через a предел этой подпоследовательности. Покажем, что вся последовательность {xn} также сходится к числу a, т. е. что limnxn=a.

Зададим ε>0 и, пользуясь фундаментальностью последовательности {xn}, найдем такой номер N, что для всех номеров n,mN справедливо неравенство |xnxm|<ε2. Далее, пользуясь тем, что limkxnk=a, для заданного ε найдем номер k, такой, что nkN (это возможно, поскольку nk при k) и |xnka|<ε2. Положим m=nk. Тогда получим, что для любого nN справедливо неравенство |xnxnk|<ε2. Отсюда следует, что для nN |xna||xnxnk|+|xnka|<ε2+ε2=ε.

Итак, для заданного ε>0 мы нашли номер N, начиная с которого справедливо неравенство |xna|<ε. Поскольку выбранное ε>0 произвольно, то по определению предела последовательности получаем, что limnxn=a.

Определение фундаментальности последовательности можно сформулировать в такой эквивалентной форме.

Определение. Последовательность {xn} называется фундаментальной, если для любого ε>0 найдется такой номер N, зависящий, вообще говоря, от ε, что для любого nN и для любого pN справедливо неравенство |xn+pxn|<ε.

Пользуясь этим определением, скажем, что последовательность {xn} не является фундаментальной, если найдется такое ε0>0, что для любого N существуют такой номер nN и такое натуральное число p, что |xn+pxn|ε0.

Пример 1. Рассмотрим последовательность xn=1+12++1n. Для натуральных n и p имеем xn+pxn=1n+1++1n+p1n+p++1n+p=pn+p. Если n зафиксировано, то для p=n получаем |xn+pxn|12. Выберем ε0=12>0. Тогда для любого номера N положим n=N, p=n и будем иметь |xn+pxn|ε0. Это означает, что данная последовательность не является фундаментальной и, следовательно, в силу критерия Коши, она расходится.

Пример 2. Покажем, что последовательность xn=sin112+sin222++sinnn2 фундаментальна, а значит, сходящаяся. Для натуральных n и p имеем |xn+pxn|1(n+1)2++1(n+p)2 1n(n+1)++1(n+p1)(n+p)= =1n1n+1++1n+p11n+p= =1n1n+p1n<ε, если только nN=[1ε]+1. Этим самым доказано, что данная последовательность фундаментальна.

Пример 3. Доказать, что последовательность xn=a112+a222++ann2, где |an|2 для всех n натуральных, сходится, с помощью критерия Коши.

Решение

Для натуральных n и p |xn+pxn|=|an+1|(n+1)2++|an+p|(n+p)2 2(n+1)2++2(n+p)2 2(n+1)n++2(n+p)(n+p1)= =2n2n+1++2n+p12n+p= =2n2n+p2n<ε если только nN=[2ε]+1. таким образом доказано, что последовательность фундаментальна, а следовательно она сходится.

Упражнение. Покажите, что условие limn(xn+pxn)=0, справедливое при любом натуральном p, не влечет фундаментальность последовательности {xn}

Литература

Критерий Коши

Тест по теме: «Фундаментальные последовательности. Критерий Коши сходимости числовой последовательности.»


Таблица лучших: Критерий Коши

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Условия сходимости тригонометрического ряда Фурье в точке. Признак Дини. Следствия

Необходимые понятия

Условие Гёльдера. Будем говорить, что функция f(x) удовлетворяет в точке x0 условия Гёльдера, если существуют односторонние конечные пределы f(x0±0) и такие числа δ>0, α(0,1] и c0>0, что для всех t(0,δ) выполнены неравенства: |f(x0+t)f(x0+0)|c0tα, |f(x0t)f(x00)|c0tα.

Формула Дирихле. Преобразованной формулой Дирихле называют формулу вида:
Sn(x0)=1ππ0(f(x0+t)+f(x0t))Dn(t)dt(1), где Dn(t)=12+cost++cosnt=sin(n+12)t2sint2(2)ядро Дирихле.

Используя формулы (1) и (2), запишем частичную сумму ряда Фурье в следующем виде:
Sn(x0)=1ππ0f(x0+t)+f(x0t)2sint2sin(n+12)tdt
limnSn(x0)1ππ0f(x0+t)+f(x0t)2sint2sin(n+12)tdt=0(3)

Для f12 формула (3) принимает следующий вид: limn1δsin(n+12)t2sint2dt=12,0<δ<π.(4)

Сходимость ряда Фурье в точке

Теорема. Пусть f(x)2π-периодическая абсолютно интегрируема на [π,π] функция и в точке x0 удовлетворяет условию Гёльдера. Тогда ряд Фурье функции f(x) в точке x0 сходится к числу f(x0+0)+f(x00)2.

Если в точке x0 функция f(x) — непрерывна, то в этой точке сумма ряда равна f(x0).

Доказательство

Следствие 1. Если 2π-периодическая и абсолютно интегрируема на [π,π] функция f(x) имеет в точке x0 производную, то ее ряд Фурье сходится в этой точке к f(x0).

Следствие 2. Если 2π-периодическая и абсолютно интегрируема на [π,π] функция f(x) имеет в точке x0 обе односторонние производные, то ее ряд Фурье сходится в этой точке к f(x0+0)+f(x00)2.

Следствие 3. Если 2π-периодическая и абсолютно интегрируема на [π,π] функция f(x) удовлетворяет в точках π и π условию Гёльдера, то в силу периодичности сумма ряда Фурье в точках π и π равна f(π0)+f(π+0)2.

Признак Дини

Определение. Пусть f(x)2π-периодическая функция, Точка x0 будет регулярной точкой функции f(x), если

    1) существуют конечные левый и правый пределы limxx0+0f(x)=limxx00f(x)=f(x0+0)=f(x00),
    2) f(x0)=f(x0+0)+f(x00)2.

Теорема. Пусть f(x)2π-периодическая абсолютно интегрируема на [π,π] функция и точка x0R — регулярная точка функции f(x). Пусть функция f(x) удовлетворяет в точке x0 условиям Дини: существуют несобственные интегралы h0|f(x0+t)f(x0+0)|tdt,h0|f(x0t)f(x00)|tdt,

тогда ряд Фурье функции f(x) в точке x0 имеет сумму f(x0), т.е. limnSn(x0)=f(x0)=f(x0+0)+f(x00)2.

Доказательство

Следствие Если 2π периодическая функция f(x) кусочно дифференциируема на [π,π], то ее ряд Фурье в любой точке x[π,π] сходится к числу f(x0+0)+f(x00)2.

Пример 1

Пример 2

Литература

Тест по материалу данной темы:

Формулы Ньютона-Лейбница

Если существует функция F(x), непрерывная на отрезке [a,b] и такая, что F(x)=f(x) при ax<b, то для несобственного интеграла baf(x)dx справедлива обобщенная формула Ньютона-Лейбница:

baf(x)dx=limε+0bεaf(x)dx=limε+0[F(bε)F(a)]

Если f(x) непрерывна при ax<b и имеет точку разрыва x=a, тогда:

baf(x)dx=limε+0ba+εf(x)dx=limε+0[F(b)F(a+ε)]

Если подынтегральная функция не ограничена в отрезке интегрирования ( например x=c ), то эту точку «вырезают», а интеграл baf(x)dx определяют в предположении, что F(x) — первообразная для f(x), так:

baf(x)dx=limε+0cεaf(x)dx+limε+0bc+εf(x)dx=limε+0F(x)|cεa+
+limε+0F(x)|bc+ε=limε+0F(cε)F(a)+F(b)limε+0F(c+ε)

Если пределы существуют и конечны, то интеграл baf(x)dx называется сходящимся, в противном случае — расходящимся.

Литература

Тест : Формулы Ньютона-Лейбница

Тест на знание темы «Формулы Ньютона-Лейбница»