Ф1803. О вычислении угла полета камня в промежутке ускорения

Задача из журнала «Квант» (2001 год, 6 выпуск)

Условие

Под каким углом к горизонту следует бросить камень, чтобы расстояние от него до точки бросания в течение полета все время возрастало? Камень бросают с небольшой скоростью, сопротивлением воздуха можно пренебречь.

Решение

Если бросить камень почти вертикально, то расстояние до него вначале будет увеличиваться, а затем начнет уменьшаться. Ясно, что нужно найти «граничное» значение угла бросания $\alpha_\Gamma.$ Ясно также, что «подозрительная» точка траектории находится на спадающем ее участке. В этой точке вектор скорости $\overline{v}$ перпендикулярен радиусу-вектору $\overline{R}$ (см. рисунок).

Тогда $$\frac{y}{x} = \frac{v_x}{-v_y}, или \frac{v_0t\sinα_Γ-\frac{gt^2}{2}}{v_0t\cosα_Γ} = \frac{v_0\cosα_Γ}{gt-v_0\sinα_Γ}.$$

Отсюда получаем квадратное уравнение:

$$t^2- \frac{3v_0\sinα_Γ}{g}t + \frac{2v^2_0}{g^2} = 0.$$

У этого уравнения есть корень при условии, что дискриминант $D \geqslant 0$. Тогда условие задачи будет выполнено, если это уравнение не имеет корней, т.е. если

$$\frac{9v^2_0-\sin^2α_Γ}{g^2} − \frac{8v^2_0}{g^2} \leqslant 0.$$

Для граничного угла находим

$$\sinα_Γ = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}.$$

Если $α<α_Γ = \arcsin\frac{2\sqrt{2}}{3} = 70,5^o,$ то все хорошо.

З.Рафаилов

Ф1759. О силе тяги, времени и предельной скорости

Задача из журнала «Квант» (2001 год, 2 выпуск)

Условие

Длинный товарный поезд трогается с места. Вагоны соединены друг с другом с помощью абсолютно неупругих сцепок. Первоначально зазор в каждой сцепке равен $L$ (см. рисунок). Масса локомотива $m$, а его порядковый номер первый. Все вагоны загружены, и масса каждого из них тоже m.

  1. Считая силу тяги локомотива постоянной и равной $F$ , найдите время, за которое в движение будет вовлечено $N$ вагонов.
  2. Полагая, что состав очень длинный ($N\rightarrow \infty$), определите предельную скорость ${\mathcal v}_\infty$ локомотива.

train

Решение

  1. Пусть ${\mathcal v}_i^{\prime}$ — скорость части состава из $i$ вагонов сразу после вовлечения в движение $i$-го вагона, а ${\mathcal v}_i$ — скорость части состава из $i$ вагонов перед ударом с $(i+1)$-м вагоном. Из закона сохранения импульса $$(i+1)m\mathcal v_{i+1}^{\prime}=im\mathcal {v}_i=\mathcal {p}_i$$По второму закону Нютона $$a_{a+1}=\dfrac{F}{(i+1)m}$$ а по известному кинематическому соотношению $$a_{i+1}L=\dfrac{\mathcal v_{i+1}^{2}-\mathcal v_{i+1}^{\prime2}}{2}$$Отсюда получим $$\mathcal v_{i+1}^{2}=\dfrac{2FL}{(i+1)m}+\left({\dfrac{i}{i+1}}\right)^{2}\mathcal v_{i+1}^{2}$$ или $$\mathcal {p}_{i+1}^{2}=2(i+1)mFL+\mathcal {p}_{i}^{2}$$Из этой рекуррентной формулы следует $$\mathcal {p}_{N}^{2}=2mFL\sum_{i=1}^{N}i+\mathcal {p}_{0}^{2}$$ или, так как $\mathcal {p}_{0}=0$, $$\mathcal {p}_{N}^{2}=2mFL\dfrac{N(N+1)}{2}$$ откуда $$\mathcal v_{N}=\sqrt{\dfrac{FL}{m}}\sqrt{\dfrac{N+1}{N}}$$Найдём теперь время $\mathcal t_{N}$ вовлечения в движение $N$ вагонов: $$\mathcal v_{i}-\mathcal v_{i}^{\prime}=\mathcal a_{i}\triangle\mathcal t_{i},$$ $$\triangle\mathcal t_{i}=\dfrac{\mathcal v_{i}-\mathcal v_{i}^{\prime}}{\mathcal a_{i}}=\dfrac{m}{F}(i\mathcal v_{i}-i\mathcal v_{i}^{\prime})=\dfrac{m}{F}(i\mathcal v_{i}-(i-1)\mathcal v_{i-1}),$$ $$\mathcal t_{N}=\dfrac{m}{F}\sum_{i=1}^{N-1}(i\mathcal v_{i}-(i-1)\mathcal v_{i-1})=\dfrac{m}{F}((N-1)\mathcal v_{N-1}-0\cdot\mathcal v_{0})=$$ $$=\dfrac{m}{F}\mathcal v_{N-1}(N-1).$$Используя полученное ранее выражение для $\mathcal v_{N}$, окончательно получим $$\mathcal t_{N}=\sqrt{\dfrac{mL}{F}}N\sqrt{1-\dfrac{1}{N}}.$$
  2. Из выражения для $\mathcal v_{N}$ находим, что при $N\rightarrow \infty$ скорость состава $\mathcal n_{\infty}\rightarrow\sqrt{FL/m}$.

П. Бойко, Ю. Полянский

Ф1316. О нагреве полупроводникового терморезистора

Задача из журнала «Квант» (1991 год, 10 выпуск)

Условие

Полупроводниковый терморезистор имеет зависимость сопротивления от температуры вида $R = R_{0}(1-\alpha t).$ Когда терморезистор нагрет до температуры $t,$ он рассеивает в окружающую среду мощность $P = B(t-t_{окр}).$ Какой ток будет течь в цепи, если к терморезистору подключить источник с напряжением $U$?

Решение

Пусть при напряжении $U$ ток через терморезистор составит $I$. Тогда запишем $$R = \dfrac{U}{I} = R_{0}(1-\alpha t)$$ $$P = UI = B(t-t_{окр}).$$ Для того чтобы найти связь между током и напряжением, нужно исключить из этих уравнений температуру $t$: $$t = t_{окр} + \dfrac{UI}{B},$$ $$\dfrac{U}{I} = R_{0}\left(1-\alpha t_{окр}-\alpha\dfrac{UI}{B}\right),$$ $$U = \dfrac{R_{0}(1-\alpha t_{окр})}{\dfrac{\alpha R_{0}I}{B} + \dfrac{1}{I}}.$$ При малых токах, когда мощность мала и температура терморезистора почти не отличается от окружающей, он ведет себя как обычный резистор с сопротивлением $R = R_{0}(1-\alpha t_{окр}).$ С увеличением тока температура резистора увеличивается и при больших токах приближается к критическому значению$$t_{кр} = \dfrac{1}{\alpha}.$$ Но вопрос в задаче поставлен несколько иначе: каким будет ток при подаче напряжения $U$? Сложность в том, что одному значению $U$ соответствуют два (либо — при больших напряжениях — ни одного) значения тока. Легко найти граничное напряжение $U_{гр}$, выше которого решения нет, — оно соответствует минимальному значению знаменателю при токе $I = I_{кр}$:$$U_{гр} = U(I_{кр}) = U\left(\sqrt{\dfrac{\alpha R_{0}}{B}}\right) = \dfrac{R_{0}(1-\alpha t_{окр})}{\sqrt{\dfrac{B}{(\alpha R_{0})}}\left(1 + \left(\dfrac{\alpha R_{0}}{B}\right)^2\right)}.$$ Выше этого напряжения решений нет. Но все же — какой ток потечет по цепи, если подключить к ней напряжение большее, чем $U_{гр}?$ Какой-нибудь наверняка потечет, только мы его не сможем подсчитать, исходя из условий задачи — они становятся противоречивыми. Ясно, что «настоящий» терморезистор имеет другую — более сложную — зависимость сопротивления от температуры (она не дает отрицательных значений сопротивления при $t > t_{кр} = \dfrac{1}{\alpha}$), и там подобной проблемы не будет.
Теперь о той области напряжений, для которой возможны два значения тока. Если медленно повышать напряжение, то и ток будет повышаться, т. е. реализуется меньшее из двух значений тока. Но возможно равновесие и при втором — большем значении, если резистор заранее «подогреть». Подумайте сами, будет ли такое равновесие устойчивым.

А. Зильбеман