- 15.1 Определения и простейшие свойства
- 15.1.1 Простейшие свойства сходящихся рядов
- 15.2 Ряды с неотрицательными слагаемыми
- 15.2.1 Признак сравнения
- 15.2.2 Признак Даламбера
- 15.2.3 Признак Коши
- 15.2.4 Интегральный признак
-
- 15.3 Знакопеременные ряды и ряды со слагаемыми произвольного знака
- 15.3.1 Признак Лейбница
- 15.3.2 Признаки Абеля и Дирихле
- 15.4 Абсолютная и условная сходимость. Перестановки рядов
- 15.4.1 Перестановки абсолютно сходящихся рядов
- 15.4.2 Перестановки условно сходящихся рядов
- 15.4.3 Умножение рядов. Теорема Коши
- 15.5 Бесконечные произведения
Метка: числовые ряды
15.2.2 Признак Даламбера
Теорема (признак Даламбера). Пусть дан ряд $\displaystyle \sum_{n = 1}^{\infty} a_n$ с положительными слагаемыми. Предположим, что существует такое число $q, 0 < q < 1,$ что начиная с некоторого номера $N$ справедливо неравенство $\frac{a_{n + 1}}{a_n} \leqslant q \left(n \geqslant N\right).$ Тогда ряд $\displaystyle \sum_{n = 1}^{\infty} a_n$ сходится.
Из условия теоремы следует, что $a_{N +1} \leqslant q \cdot a_N, a_{N + 2} \leqslant q \cdot a_{N + 1}, \ldots, a_n \leqslant q \cdot a_{n − 1} \left(n \geqslant N + 1\right).$ Перемножая эти неравенства, получаем $a_n \leqslant q^{n – N} \cdot a_N \left(n \geqslant N + 1\right),$ т. е. $a_n \leqslant c \cdot q^n \left(n \geqslant N + 1\right),$ где $c = a_N \cdot q^{−N}.$ По признаку сравнения, из сходимости геометрической прогрессии со знаменателем $q, \mid q \mid < 1,$ следует сходимость исходного ряда.
Замечание 1. Из неравенства $$\frac{a_{n + 1}}{a_n} < 1 \tag{15.6}$$ не следует сходимость ряда $\displaystyle \sum_{n = 1}^{\infty} a_n.$ Неравенство $\left(15.6\right)$ означает лишь то, что слагаемые ряда строго убывают, из чего вовсе не следует сходимость ряда, например, $\displaystyle \sum_{n = 1}^{\infty} \frac{1}{n}, \displaystyle \sum_{n = 1}^{\infty} \frac{1}{\sqrt{n}}$ и т. д.
Замечание 2. Из неравенства $$\frac{a_{n + 1}}{a_n} \geqslant 1 \left(n \geqslant N\right) \tag{15.7}$$ сразу следует расходимость ряда $\displaystyle \sum_{n = 1}^{\infty} a_n.$ В самом деле, $\left(15.7\right)$ означает, что слагаемые ряда образуют неубывающую последовательность положительных чисел и, следовательно, не стремятся к нулю, так что в этом случае не выполнено необходимое условие сходимости.
Следствие (признак Даламбера в предельной форме). Пусть дан ряд $$\displaystyle \sum_{n = 1}^{\infty} a_n \tag{15.8}$$ с положительными слагаемыми. Предположим, что существует (быть может, и бесконечный) $\displaystyle \lim_{n \rightarrow {\infty}} \frac{a_{n + 1}}{a_n} = \lambda.$ Тогда
a) если $0 \leqslant \lambda < 1,$ то ряд $\left(15.8\right)$ сходится;
b) если $1 < \lambda \leqslant \infty,$ то ряд $\left(15.8\right)$ расходится;
c) если $\lambda = 1,$ то ничего определенного о сходимости ряда $\left(15.8\right)$ сказать нельзя.
a) Выберем такое $\varepsilon > 0,$ что $q \equiv \lambda + \varepsilon < 1 \left(\text{например, }\varepsilon = \frac{\left(1 — \lambda\right)}{2}\right).$ Тогда, начиная с некоторого номера $N,$ будет иметь место неравенство $\frac{a_{n + 1}}{a_n} \leqslant q \left(n \geqslant N\right),$ и, в силу признака Даламбера, ряд $\left(15.8\right)$ сходится.
b) Если $1 < \lambda \leqslant \infty,$ то, начиная с некоторого номера, справедливо неравенство $\frac{a_{n + 1}}{a_n} \geqslant 1$ и, в силу замечания 2, ряд $\left(15.8\right)$ расходится.
c) Для доказательства приведем примеры сходящегося и расходящегося рядов, для которых $\lambda = 1.$ Ряд $\displaystyle \sum_{n = 1}^{\infty} \frac{1}{n}$ расходится и $\frac{a_{n + 1}}{a_n} = \frac{n}{n + 1} \rightarrow 1$ при $n \rightarrow \infty.$ Ряд $\displaystyle \sum_{n = 1}^{\infty} \frac{1}{n^2}$ сходится и $\frac{a_{n + 1}}{a_n} \rightarrow 1$ при $n \rightarrow \infty.$
Пример 1. Исследовать на сходимость ряд $\displaystyle \sum_{n = 1}^\infty \frac{1000^n}{n!}.$
По признаку Даламбера, $$\frac{a_{n + 1}}{a_n} = \frac{1000^{ n + 1} \cdot n!}{\left(n + 1\right)! \cdot 1000^n} = \frac{1000}{n + 1} \rightarrow 0 \qquad \left(n \rightarrow \infty\right),$$ следовательно, данный ряд сходится.
Пример 2. Исследовать на сходимость ряд $\displaystyle \sum_{n = 1}^\infty \frac{\left(2n + 1\right)!}{\left(n!\right)^2}.$
К этому ряду удобно применить признак Даламбера $$\frac{a_{n + 1}}{a_n} = \frac{\left(2n + 3\right)! \cdot \left(n!\right)^2}{\left[\left(n + 1\right)!\right]^2 \cdot \left(2n + 1\right)!} = \frac{\left(2n + 2\right) \cdot \left(2n + 3\right)}{\left(n + 1\right)^2} =$$ $$= \frac{4n^2 + 10n + 6}{n^2 + 2n + 1} \rightarrow 4 \qquad \left(n \rightarrow \infty\right),$$ По признаку Даламбера, данный ряд расходится.
Пример 3. Исследовать на сходимость ряд $\displaystyle \sum_{n = 1}^\infty \frac{1}{2n — 1}.$
По признаку Даламбера, $$\frac{a_{n + 1}}{a_n} = \frac{1 \cdot \left(2n – 1\right)}{2n \cdot 1} \rightarrow 1 \qquad \left(n \rightarrow \infty\right),$$ следовательно, мы не можем выяснить характер сходимости данного ряда с помощью признака Даламбера.
Признак Даламбера
Вы можете пройти данный тест, чтобы примерно оценить, насколько вы поняли тему «Признак Даламбера»
- Коляда В. И., Кореновский А. А. Курс лекций по математическому анализу. 2010г. стр.10-12.
- Б. П. Демидович «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997г. стр.147.
- Л. Д. Кудрявцев. Курс математического анализа, том 2, 1988-1989г. стр.20-21.
- Лысенко З. М. Конспект лекций по математическому анализу.
15.3.1 Признак Лейбница
Определение. Числовой ряд $\sum\limits_{n=1}^\infty a_{n}$ называется знакопеременным (знакочередующимся), если его слагаемые попеременно меняют знак, т. е. если $a_{n} \cdot a_{n+1}<0$ $(n=1,2,\dots)$.
Знакопеременный ряд можно записать в виде $$u_{1}-u_{2}+u_{3}-u_{4}+\dots=\sum \limits _{n=1}^\infty (-1)^{n-1}u_{n},$$ где $u_{n}\geqslant 0$.
Теорема Лейбница. Если модули слагаемых знакочередующегося ряда $$\sum\limits_{n=1}^\infty (-1)^{n-1}u_{n} (15.14)$$ монотонно убывают к нулю, то этот ряд сходится.
Обозначим через $S_{n}$ частичную сумму ряда $(15.14)$. Рассмотрим частичные суммы с четными номерами $$S_{2m}=(u_{1}-u_{2})+(u_{3}-u_{4})+\dots+(u_{2m-1}-u_{2m}).$$ Так как $u_{n}$ убывают по условию, то в каждой скобке выражение неотрицательно. Поэтому $$S_{2(m+1)}=S_{2m+2}=S_{2m}+(u_{2m+1}-u_{2m+2})\geqslant S_{2m}.$$ Это означает, что последовательность $\left\{ {S_{2m}} \right\}_{m=1}^\infty$ возрастает. С другой стороны, из представления $$S_{2m}=u_{1}-(u_{2}-u_{3})-(u_{4}-u_{5})-\dots-(u_{2m-2}-u_{2m-1})-u_{2m},$$ в силу монотонности $ u_{k}$, следует, что $S_{2m}\leqslant u_{1}$. Таким образом, последовательность $\left\{ {S_{2m}} \right\}_{m=1}^\infty$ ограничена сверху и возрастает и, следовательно, имеет предел. Обозначим $S= \displaystyle{\lim_{m \to \infty}} S_{2m}$. Для доказательства сходимости ряда $(15.14)$ нужно еще показать, что $S_{2m+1} \rightarrow S (m\rightarrow \infty)$. Но это сразу следует из равенства $S_{2m+1}= S_{2m}+ u_{2m+1}$ и условия теоремы $u_{2m+1}\rightarrow 0 (m\rightarrow\infty)$. Окончательно, последовательность частичных сумм ряда $(15.14)$ с четными и с нечетными номерами сходятся к одному и тому же пределу $S$. Поэтому $S= \displaystyle{\lim_{n \to \infty}} S_{n}$.
Знакочередующийся ряд, для которого выполнены условия теоремы Лейбница, называется рядом лейбницевского типа. Теорема Лейбница утверждает, что ряд лейбницевского типа сходится.
Пример 1. Рассмотрим полугармонический ряд $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n-1}}{n}$. Здесь $u_{n}=\frac{1}{n}$ и данный ряд является рядом лейбницевского типа. По теореме Лейбница, он сходится. Ранее мы показали, что ряд, составленный из модулей слагаемых, – гармонический – расходится. Таким образом, сходимость исходного ряда обусловлена не малостью его слагаемых, а взаимной интерференцией слагаемых.
Пример 2. Приведем пример, показывающий, что в теореме Лейбница нельзя отбросить условие монотонности.
Ряд $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ является рядом лейбницевского типа и, следовательно, сходится. Гармонический ряд $\displaystyle{\sum_{n=1}^\infty} \frac{1}{n}$ расходится. Рассмотрим знакопеременный ряд $\displaystyle{\sum_{n=1}^\infty}\left[ \frac{(-1)^{n-1}}{\sqrt{n}} +\frac{1}{n}\right].$ Его слагаемые стремятся к нулю, но их модули не монотонны. Легко видеть, что он расходится. Действительно, если бы он являлся сходящимся, то сходился бы и ряд $\displaystyle{\sum_{n=1}^\infty} \frac{1}{n}$, как разность двух сходящихся рядов $\displaystyle{\sum_{n=1}^\infty}\left[ \frac{(-1)^{n-1}}{\sqrt{n}} +\frac{1}{n}\right]$ и $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n-1}}{\sqrt{n}}.$ Но гармонический ряд $\displaystyle{\sum_{n=1}^\infty} \frac{1}{n}$ расходится.
Теорема (оценка остатка ряда лейбницевского типа). Остаток после $n$-го слагаемого ряда лейбницевского типа имеет такой же знак, как и его первое слагаемое, а по абсолютной величине не превосходит абсолютной величины первого слагаемого.
Пусть $S_{n}$– частичные суммы ряда лейбницевского типа $$\displaystyle{\sum_{n=1}^\infty} (-1)^{n-1}u_{n} (15.15)$$ $S= \displaystyle{\sum_{n=1}^\infty} (-1)^{n-1}u_{n}$ и $r_{n}=\displaystyle{\sum_{k=n+1}^\infty} (-1)^{k-1}u_{k}$ Тогда $r_{n}=S-S_{n}$, и мы хотим оценить $r_{n}.$
При доказательстве теоремы Лейбница мы получили, что последовательность частичных сумм ряда $(15.15)$ с четными номерами $S_{2m}$ возрастает, и поэтому $S_{2m}\leqslant S$. С другой стороны, $$S_{2m+1}=u_{1}-(u_{2}-u_{3})-(u_{4}-u_{5})-\dots-(u_{2m}-u_{2m+1}),$$ откуда видно, что $S_{2m+1}\geqslant S_{2m+3},$ т.е. последовательность частичных сумм ряда $(15.15)$ с нечетными номерами убывает и поэтому $S_{2m+1}\geqslant S$.
Таким образом, $$S_{2m}\leqslant S \leqslant S_{2m+1},$$ откуда $$0\leqslant S-S_{2m}\leqslant S_{2m+1}-S_{2m}=u_{2m+1},$$ т.е. остаток четного порядка $r_{2m}=S-S_{2m}$ удовлетворяет неравенству $$0\leqslant r_{2m} \leqslant u_{2m+1},$$ что и доказывает теорему для остатков четного порядка.
Аналогично, из неравенства $$S_{2m+2}\leq S \leqslant S_{2m+1}$$ следует $$0\geqslant S — S_{2m+1}\geqslant S_{2m+2}-S_{2m+1}=-u_{2m+2},$$ т. е. $$-u_{2m+2}\leqslant r_{2m+1}\leqslant 0,$$ чем доказано утверждение теоремы для остатков нечетного порядка.
Итак, мы показали, что $\text{sign }$ $r_{n} = (-1)^{n}$ и $\mid r_{n}\mid \leqslant u_{n+1}$ для любого $n = 1,2,\dots$
Примеры решения задач
Определить, сходятся ли ряды:
- $\displaystyle \sum_{n=1}^\infty (-1)^n \frac{\ln^2n}{n}$
Решение
Найдём предел $u_{n}=\frac{\ln^2n}{n}$ при $n\rightarrow\infty$, воспользовавшись правилом Лопиталя: $\displaystyle\lim_{n \to \infty}\frac{\ln^2n}{n}=\displaystyle\lim_{n \to \infty}\frac{2\ln n}{n}=\displaystyle\lim_{n \to \infty}\frac{2}{n}=0$, то есть модули слагаемых стремятся к нулю. Для проверки монотонности воспользуемся теоремой о достаточном условии строгой монотонности:
$\left(\frac{\ln^2x}{x}\right)^\prime=\frac{\frac{2\ln x}{x}x-\ln^2 x}{x^2}=\frac{\ln x \left(2-\ln x \right)}{x^2}$ Откуда видно, что при $x\rightarrow\infty$, $\left(\frac{\ln^2x}{x}\right)^\prime<0$, откуда следует, что модули слагаемых монотонно убывают. То есть, данный ряд удовлетворяет условиям теоремы Лейбница, следовательно, он сходится. - $\displaystyle{\sum_{n=1}^\infty} \frac{(-1)^{n+1}}{{\sqrt[n]{n}}}$
Решение
Найдём предел $u_{n}=\frac{(-1)^{n+1}}{{\sqrt[n]{n}}}$ при $n\rightarrow\infty$: $\displaystyle \lim_{n \to \infty} \frac{(-1)^{n+1}}{{\sqrt[n]{n}}}=\lim_{n \to \infty}n^{-\frac{1}{n}}=\lim_{n \to \infty}e^{-\frac{\ln n}{n}}. $Воспользуемся правилом Лопиталя: $\displaystyle \lim_{n \to \infty}e^{-\frac{\ln n}{n}}=\lim_{n \to \infty}e^{-\frac{1}{n}}=e^0=1$. Покажем, что данный ряд не удовлетворяет не только условиям теоремы Лейбница, но и необходимое условие сходимости числового ряда: $\displaystyle \lim_{n \to \infty} \frac{(-1)^{n+1}}{{\sqrt[n]{n}}}=\displaystyle \lim_{n \to \infty} (-1)^{n+1}$ Но предела $\displaystyle \lim_{n \to \infty} (-1)^{n+1}$ не существует (можно показать по Гейне, взяв ${x_{k}}^{\prime}=2n+1$ и ${x_{k}}^{\prime \prime}=2n$). То есть, данный ряд расходится.
- $\displaystyle \sum_{n=1}^\infty \frac{(-1)^{n+1}}{2n-\text{arctg } n}$
Решение
Найдём предел $\displaystyle \lim_{n \to \infty} \frac{1}{2n-\text{arctg } n}=\lim_{n \to \infty} \frac{1}{2n-\frac{\pi}{2}}=0.$ То есть модули слагаемых стремятся к нулю. Проверяем монотонность: $\displaystyle \left(\frac{1}{2x-\text{arctg } x}\right)^\prime=\frac{-2+\frac{1}{1+x^2}}{\left(2x-\text{arctg } x\right)^2},$ откуда видно, что при $x\rightarrow\infty$ $\displaystyle \left(\frac{1}{2x-\text{arctg } x}\right)^\prime < 0$, что по теореме о достаточном условии строгой монотонности говорит о том, что $\displaystyle \left\{\frac{1}{2n-\text{arctg } n}\right\}_{n=1}^\infty$ монотонно убывает. То есть, по теореме Лейбница, ряд сходится.
- $\displaystyle \sum_{n=1}^\infty \sin{\left(\pi\sqrt{n^2+k^2}\right)},$ где $k \in \mathbb{N}$
Решение
Воспользовавшись нечётностью и периодичностью синуса, получим, что $\sin\alpha=-\sin(-\alpha)=-\sin\left(2\pi n-\alpha\right)=-\sin\left(\pi n+(\pi n -\alpha\right))=$$=-\sin(\pi n)\cos(\pi n-\alpha)-\cos(\pi n)\sin(\pi n-\alpha)=$$=-\cos(\pi n)\sin(\pi n-\alpha)=(-1)^{n+1}\sin(\pi n-\alpha)$. То есть, $$\displaystyle \sum_{n=1}^\infty \sin{\pi\sqrt{n^2+k^2}}=\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\sin(\pi n-\pi\sqrt{n^2+k^2}).$$ Предел общего члена ряда: $\displaystyle \lim_{n \to \infty} (-1)^{n+1}\sin(\pi n-\pi\sqrt{n^2+k^2})=\lim_{n \to \infty}\sin\left(\frac{n^2-(n^2+k^2)}{n+\sqrt{n^2+k^2}}\right)=$$\displaystyle =\lim_{n \to \infty}\sin\left(\frac{\pi k^2}{n+\sqrt{n^2+k^2}}\right)=0.$ Монотонность. $\left(\frac{\pi k^2}{x+\sqrt{x^2+k^2}}\right)^\prime=\frac{-\pi k^2}{x+\sqrt{x^2+k^2}}\left(1+\frac{x}{\sqrt{x^2+k^2}}\right)=$$=\frac{-\pi k^2}{x+\sqrt{x^2+k^2}}\left(\frac{x+\sqrt{x^2+k^2}}{\sqrt{x^2+k^2}}\right)=\frac{-\pi k^2}{x\sqrt{x^2+k^2}+x^2+k^2}$, то есть при $n \to \infty$ $\left(\frac{\pi k^2}{x+\sqrt{x^2+k^2}}\right)^\prime<0$, а значит, по теореме о достаточном условии строгой монотонности $\left\{\frac{\pi k^2}{n+\sqrt{n^2+k^2}}\right\}_{n=1}^\infty$ монотонно убывает при достаточно больших $n.$ При $y$ в окрестности нуля, по таблице эквивалентных, $\sin(y)\sim y$, а $y=\frac{\pi k^2}{x+\sqrt{x^2+k^2}}$ монотонно убывает к $0$, как было показано. Значит, общий член ряда также монотонно убывает к нулю, следовательно, по признаку Лейбница, ряд сходится.
При первом взгляде могло показаться, что для этого ряда не выполняется необходимое условие сходимости числового ряда. Однако, это не так: $\displaystyle \lim_{n \to \infty}\sin{\left(\pi\sqrt{n^2+k^2}\right)}=\lim_{n \to \infty}\sin{\left(\pi\sqrt{n^2\left(1+\frac{k^2}{n^2}\right)}\right)}=$$\displaystyle =\lim_{n \to \infty}\sin{\pi n\sqrt{1+\frac{k^2}{n^2}}}=\lim_{n \to \infty}\sin{\pi n}=0$
Признак Лейбница
Тест для проверки уровня усвоения материала по теме «признак Лейбница».
Смотрите также
15.1 Определения и простейшие свойства
Пусть задана числовая последовательность $\left\{a_{n}\right\}_{n=1}^{\infty}$. Символ $a_{1}+a_{2}+\cdots+a_{n}+\ldots$, или, что то же самое, $\displaystyle\sum_{n=1}^{\infty}a_{n}$, называется числовым рядом, а сами числа $a_{n}$ называются слагаемыми или членами ряда. Обозначим $S_{1}=a_{1}, S_{2}=a_{1}+a_{2},\ldots, S_{n}=a_{1}+a_{2}+\cdots+a_{n}=\displaystyle\sum_{k=1}^{n}a_{k}$ $\left(n=1,2,\ldots\right)$. Числа $S_{n}$ называются частичными суммами ряда $\displaystyle\sum_{n=1}^{\infty}a_{n}$.
Определение. Если существует $\displaystyle\lim_{n \rightarrow \infty}S_{n}=S$, то ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$ называется сходящимся, а число $S$ называется суммой ряда $\displaystyle\sum_{n=1}^{\infty}a_{n}$. Если же не существует конечного предела последовательности частичных сумм $S_{n}$, то ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$ называется расходящимся. Если ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$ сходится к сумме $S,$ то это обозначают так: $$S=a_{1}+a_{2}+\cdots+a_{n}+\cdots=\displaystyle\sum_{n=1}^{\infty}a_{n}.$$
Таким образом, с каждым рядом $\displaystyle\sum_{n=1}^{\infty}a_{n}$ мы связываем последовательность его частичных сумм $S_{n}=\displaystyle\sum_{k=1}^{n}a_{k}$, причем сходимость ряда мы определяем как сходимость последовательности частичных сумм этого ряда (понятие сходимости последовательности изучалось нами ранее). Обратно, если задана последовательность $\left\{S_{n}\right\}_{n=1}^{\infty}$, то легко составить ряд, для которого эта последовательность будет последовательностью частичных сумм. Действительно, достаточно положить $a_{1}=S_{1}, a_{2}=S_{2}-S_{1},\ldots,$ $a_{n}=S_{n}-S_{n-1}$ $(n=2,3,\ldots)$. Ясно, что в этом случае будем иметь $a_{1}+\cdots+a_{n}=S_{n}$, т. е. заданные числа $S_{n}$ являются частичными суммами построенного нами рядa $\displaystyle\sum_{n=1}^{\infty}a_{n}.$
Пример 1 (геометрическая прогрессия). Геометрической прогрессией называется такая последовательность $1,q,q^{2},\ldots,q^{n−1},\ldots$, т. е. $\left\{q^{n-1}\right\}_{n=1}^{\infty}$, где $q$ – фиксированное число. Ряд $1+q+q^{2}+\cdots+q^{n−1}+\ldots\equiv\displaystyle\sum_{n=1}^{\infty}q^{n-1}$ называется суммой геометрической прогрессии. В этом случае слагаемые ряда равны ${a}_n = q^{n−1}$. Выведем формулу для суммы первых $n$ слагаемых геометрической прогрессии. Имеем $$S_{n}=1+q+q^{2}+\cdots+q^{n-2}+q^{n−1},$$$$qS_{n}=q+q^{2}+q^{3}+\cdots+q^{n-1}+q^{n}.$$Если $q\neq1$, то вычитая второе равенство из первого, получим $S_{n}=\frac{1-q^{n}}{1-q}$. Если же $q=1$, то, очевидно, $S_{n}=1+1+\cdots+1=n$ и $S_{n}\rightarrow\infty$ $\left(n\rightarrow\infty\right)$, так что при $q=1$ данный ряд расходится. Пусть $q\neq1$. Тогда вопрос о сходимости ряда $\displaystyle\sum_{n=1}^{\infty}q^{n-1}$ сводится к вопросу о сходимости последовательности $S_{n}=\frac{1-q^{n}}{1-q}$. Ясно, что возможны такие случаи.
- $\left|q\right|<1$. При этом $S_{n}\rightarrow\frac{1}{1-q}$ $\left(n\rightarrow\infty\right)$, т. е. наш ряд сходится и его сумма равна $S=\frac{1}{1-q}$.
- $\left|q\right|>1$. Тогда последовательность $S_{n}$ не имеет предела, т. е. ряд расходится.
- $\left|q\right|=1$. Случай $q=1$ уже рассмотрен. Если же $q=−1$, то, очевидно, $S_{2k}=0$ и $S_{2k+1}=1$, так что последовательность частичных сумм $\left\{S_{n}\right\}$ не имеет предела, т. е. ряд расходится.
Окончательно,$$\displaystyle\sum_{n=1}^{\infty}q^{n-1}=\frac{1}{1-q}$$при$\left|q\right|<1$, а при $\left|q\right|\geqslant 1$ ряд $\displaystyle\sum_{n=1}^{\infty}q^{n-1}$ расходится.
Пример 2. Рассмотрим ряд $$\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{n(n+1)}+\ldots$$Имеем$$S_{n}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{n(n+1)}=$$ $$=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1}.$$Теперь уже легко видеть, что $\displaystyle\lim_{n\rightarrow\infty}S_{n}=\displaystyle\lim_{n\rightarrow\infty}\left(1-\frac{1}{n+1}\right)=1$, а это означает, что наш ряд сходится и его сумма равна $\displaystyle\sum_{n=1}^{\infty}\frac{1}{n(n+1)}=1$.
Теорема (критерий Коши сходимости ряда). Ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$ сходится тогда и только тогда, когда для любого $\varepsilon>0$ найдется такой номер $N=N(\varepsilon)$, что при любом $n\geq N$ и при любом натуральном $p$ справедливо неравенство $$\left|\displaystyle\sum_{k=n+1}^{n+p}a_{k}\right|<\varepsilon.$$
Доказательство. Сумма слева в последнем неравенстве называется отрезком Коши. По определению, сходимость ряда эквивалентна сходимости последовательности его частичных сумм $S_{n}$. В силу критерия Коши для числовых последовательностей, сходимость последовательности $\left\{S_{n}\right\}$ эквивалентна ее фундаментальности. Фундаментальность последовательности $\left\{S_{n}\right\}$ означает, что для любого $\varepsilon>0$ найдется такой номер $N$, что для любого $n\geqslant N$ и для любого $p\in \mathbb {N}$ справедливо неравенство $\left|S_{n+p}−S_{n}\right|<\varepsilon$. Но поскольку $$S_{n+p}−S_{n}=a_{1}+\cdots+a_{n}+a_{n+1}+\cdots+a_{n+p}−(a_{1}+\cdots+a_{n})=$$ $$=a_{n+1}+\cdots+a_{n+p},$$ то тем самым теорема доказана. $\small\Box$
Следствие (необходимое условие сходимости). Если ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$ сходится, то $\displaystyle\lim_{n\rightarrow \infty}a_{n}=0$.
Доказательство. Если ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$ сходится, то, в силу критерия Коши, для любого $\varepsilon>0$ найдется такое $N\in \mathbb {N}$, что при любом $n\geqslant N$ и при любом $p\in \mathbb {N}$ справедливо неравенство $\left|\displaystyle\sum_{k=n+1}^{n+p}a_{k}\right|<\varepsilon$. В частности, если $p=1$, то получим, что для любого $\varepsilon>0$ найдется такой номер $N$, что при любом $n\geqslant N$ справедливо неравенство $\left|a_{n+1}\right|<\varepsilon$. Это и означает, что $\displaystyle\lim_{n\rightarrow \infty}a_{n}=0$. $\small\Box$
Другое доказательство необходимого условия сходимости. Сходимость ряда $\displaystyle\sum_{n=1}^{\infty}a_{n}$ равносильна существованию следующего предела: $\displaystyle\lim_{n \rightarrow \infty}S_{n}=S$. Но тогда и $\displaystyle\lim_{n \rightarrow \infty}S_{n-1}=S$, откуда, в силу равенства $a_{n}=S_{n}−S_{n−1}$, следует $$\displaystyle\lim_{n \rightarrow \infty}a_{n}=\displaystyle\lim_{n \rightarrow \infty}{(S_{n}-S_{n-1})}=\displaystyle\lim_{n \rightarrow \infty}S_{n}-\displaystyle\lim_{n \rightarrow \infty}S_{n-1}=S-S=0.\ \small\Box$$
Итак, если ряд $\displaystyle\sum_{n=1}^{\infty}a_{n}$, сходится, то его слагаемые стремятся к нулю. Обратное утверждение неверно. Действительно, для ряда $\displaystyle\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ имеем: $a_{n}=\frac{1}{\sqrt{n}}$. Тогда $\displaystyle\lim_{n \rightarrow \infty}a_{n}=0$ и, вместе с тем, $$S_{n}=1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}\geqslant n\cdot\frac{1}{\sqrt{n}}=\sqrt{n},$$ откуда следует, что $\displaystyle\lim_{n \rightarrow \infty}S_{n}=+\infty$, т. е. ряд $\displaystyle\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ расходится.
Пример. Гармоническим называется ряд $$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\ldots$$ Отрезок Коши этого ряда можно оценить следующим образом:
$$\displaystyle\sum_{k=n+1}^{n+p}\frac{1}{k}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+p}\geqslant\frac{1}{n+p}\cdot p.$$ Если взять $p=n$, то получим, что $\displaystyle\sum_{k=n+1}^{2n}\frac{1}{k}\geqslant\frac{n}{n+n}=\frac{1}{2}$. Это означает, что найдется такое ${\varepsilon}_{0}>0$ $({\varepsilon}_{0}=\frac{1}{2})$, что для любого $N\in \mathbb {N}$ существует $n\geqslant N$ (например, $n=N$) и существует такое $p\in \mathbb {N}$ $(p=n)$, при которых справедливо неравенство $\left|\displaystyle\sum_{k=n+1}^{n+p}\frac{1}{k}\right|\geqslant {\varepsilon}_{0}$. В силу критерия Коши это означает, что гармонический ряд расходится.
Как правило, на практике необходимое условие сходимости применяется в следующей форме: если предел слагаемых ряда не существует, либо существует, но отличен от нуля, то ряд расходится.
Примеры решения задач
-
Найти сумму ряда $$\sum_{n=1}^{\infty}\left(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n}\right).$$
Решение
$$S_{n}=\left(\sqrt{1+2}-2\sqrt{1+1}+\sqrt{1}\right)+\left(\sqrt{2+2}-2\sqrt{2+1}+\sqrt{2}\right)+\cdots+$$ $$+\left(\sqrt{n-1+2}-2\sqrt{n-1+1}+\sqrt{n-1}\right)+\left(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n}\right)=$$ $$=\left(\sqrt{3}-2\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{4}-2\sqrt{3}+\sqrt{2}\right)+\cdots+$$ $$+\left(\sqrt{n+1}-2\sqrt{n}+\sqrt{n-1}\right)+\left(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n}\right)=$$ $$=1-\sqrt{2}+\sqrt{n+2}-\sqrt{n+1}=1-\sqrt{2}+\frac{1}{\sqrt{n+2}+\sqrt{n+1}};$$ $$S=\lim_{n \rightarrow \infty}S_{n}=\lim_{n \rightarrow \infty}\left(1-\sqrt{2}+\frac{1}{\sqrt{n+2}+\sqrt{n+1}}\right)=1-\sqrt{2}.$$
-
Записать первые три члена ряда $$\sum_{n=1}^{\infty}\frac{\sqrt{n+1}}{\left(4n-3\right)5^{n}}.$$
Решение
$$\sum_{n=1}^{\infty}\frac{\sqrt{n+1}}{\left(4n-3\right)5^{n}}=\frac{\sqrt{2}}{1\cdot5^1}+\frac{\sqrt{3}}{5\cdot5^2}+\frac{\sqrt{4}}{9\cdot5^3}+\ldots$$
-
Записать сумму в свернутом виде с общим членом ряда $$\frac{2}{\sqrt[5]{7}}+\frac{4}{\sqrt[5]{14}}+\frac{8}{\sqrt[5]{21}}+\ldots$$
Решение
$$\frac{2}{\sqrt[5]{7}}+\frac{4}{\sqrt[5]{14}}+\frac{8}{\sqrt[5]{21}}+\ldots=\frac{2^1}{\sqrt[5]{7\cdot1}}+\frac{2^2}{\sqrt[5]{7\cdot2}}+\frac{2^3}{\sqrt[5]{7\cdot3}}+\ldots=\sum_{n=1}^{\infty}\frac{2^n}{\sqrt[5]{7n}}$$
-
Проверить, выполняется ли необходимое условие сходимости для ряда: $$\sum_{n=1}^{\infty}\left(2n+1\right).$$
Решение
Ряды $\displaystyle\sum_{n=1}^{\infty}\left(2n+1\right)$ расходятся, поскольку не выполняется необходимое условие сходимости: общий член ряда не стремится к нулю $\left(\displaystyle\lim_{n \rightarrow \infty}a_{n}=\displaystyle\displaystyle\lim_{n \rightarrow \infty}\left(2n+1\right)=\infty\neq0\right)$.
Определения и простейшие свойства числового ряда
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме
Таблица лучших: Определения и простейшие свойства числового ряда
Место | Имя | Записано | Баллы | Результат |
---|---|---|---|---|
Таблица загружается |
- В.И.Коляда, А. А.Кореновский. Курс лекций по математическому анализу. Часть 2. Одесса. «Астропринт». 2010. с. 27-30.
- Б.П.Демидович. Сборник задач и упражнений по математическому анализу.13-е издание, исправленное.Издательство Московского университета. Издательство ЧеРо. 1997. с. 247-248.
- В.А.Ильина, Э.Г.Позняка. Основы математического анализа. М.: Наука, 1980. с. 12.
- М.Ю.Пантеев. Матанализ с человеческим лицом, или Как выжить после предельного перехода. Полный курс математического анализа. Том 2. 2011, 2014. с. 100, 127.